Previous |  Up |  Next

Article

Title: Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ (English)
Author: Grossmann, Christian
Author: Klatte, Diethard
Author: Kummer, Bernd
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 5
Year: 2004
Pages: [571]-584
Summary lang: English
.
Category: math
.
Summary: This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques. (English)
Keyword: log-barrier method
Keyword: Mangasarian–Fromovitz constraint qualification
Keyword: convergence ofprimal-dual solutions
Keyword: locally linearized problems
Keyword: Lipschitz estimates
MSC: 49K40
MSC: 49M37
MSC: 65K10
MSC: 90C30
idZBL: Zbl 1249.90252
idMR: MR2120997
.
Date available: 2009-09-24T20:03:53Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135617
.
Reference: [1] Adler I., Monteiro R. D. C.: Limiting behavior of the affine scaling continuous trajectories for linear programming problems.Math. Programming 50 (1991), 29–51 Zbl 0719.90044, MR 1098845, 10.1007/BF01594923
Reference: [2] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-linear Parametric Optimization.Akademie–Verlag, Berlin 1982 Zbl 0502.49002
Reference: [3] El-Bakry A. S., Tapia R. A., Zhang Y.: On the convergence rate of Newton interior-point methods in the absence of strict complementarity.Comput. Optim. Appl. 6 (1996), 157–167 Zbl 0862.90120, MR 1398265, 10.1007/BF00249644
Reference: [4] Fiacco A. V., McCormick G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques.Wiley, New York 1968 Zbl 0713.90043, MR 0243831
Reference: [5] Forsgren A., Gill P. E., Wright M. H.: Interior methods for nonlinear optimization.SIAM Rev. 44 (2002), 525–597 Zbl 1028.90060, MR 1980444, 10.1137/S0036144502414942
Reference: [6] Grossmann C.: Convergence analysis for penalty/barrier path-following in linearly constrained convex programming.Discuss. Math.: Differential Inclusions, Control and Optimization 20 (2000), 7–26 MR 1752567
Reference: [7] Grossmann C., Kaplan A. A.: Strafmethoden und modifizierte Lagrange Funktionen in der nichtlinearen Optimierung.Teubner, Leipzig 1979 Zbl 0425.65035, MR 0581367
Reference: [8] Grossmann C., Schöniger G.: Sensitivität und Anwendbarkeit von Straf–Barriere–Methoden.Z. Angew. Math. Mech. 57 (1977), 419–430 Zbl 0406.90066, 10.1002/zamm.19770570408
Reference: [9] Guddat J., Guerra, F., Nowack D.: On the role of the Mangasarian-Fromovitz constraint qualification for penalty-, exact penalty-, and Lagrange multiplier methods.In: Mathematical programming with data perturbations (A. Fiacco, ed.), (Lecture Notes in Pure and Appl. Mathematics 195). Marcel Dekker, Dordrecht 1997, pp. 159–183 MR 1472270
Reference: [10] Güler O.: Limiting behavior of weighted central paths in linear programming.Math. Programming 65A (1994), 347–363 Zbl 0841.90089, MR 1296390, 10.1007/BF01581702
Reference: [11] Klatte D., Kummer B.: Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications.Kluwer, Dordrecht 2002 Zbl 1173.49300, MR 1909427
Reference: [12] Kummer B.: On solvability and regularity of a parametrized version of optimality conditions.Z. Oper. Res.: Math. Meth. Oper. Res. 45 (1995), 215–230 Zbl 0834.90120, MR 1336630
Reference: [13] Kummer B.: Parametrizations of Kojima’s system and relations to penalty and barrier functions.Math. Programming, Ser. B 76 (1997), 579–592 Zbl 0871.90086, MR 1433972, 10.1007/BF02614399
Reference: [14] Nožička F., Guddat J., Hollatz, H., Bank B.: Theorie der linearen parametrischen Optimierung.Akademie–Verlag, Berlin 1974 Zbl 0284.90053
Reference: [15] Owen G.: Spieltheorie.Springer–Verlag, Berlin 1971 (Translation) Zbl 0222.90048, MR 0351469
Reference: [16] Ralph D., Wright S. J.: Superlinear convergence of an interior point method despite dependent constraints.Math. Oper. Res. 25 (2000), 179–194 Zbl 0977.90082, MR 1853947, 10.1287/moor.25.2.179.12227
Reference: [17] Robinson S. M.: Generalized equations and their solutions.Part II: Applications to nonlinear programming. Math. Programming Stud. 19 (1982), 200–221 Zbl 0495.90077, MR 0669732, 10.1007/BFb0120989
Reference: [18] Wright S. J.: Superlinear convergence of a stabilized SQP method to a degenerate solution.Comput. Optim. Appl. 11 (1998), 253–275 Zbl 0917.90279, MR 1651700, 10.1023/A:1018665102534
Reference: [19] Wright S. J.: On the convergence of the Newton/log-barrier method.Math. Programming 90A (2001), 71–100 Zbl 0986.90061, MR 1819787, 10.1007/PL00011421
Reference: [20] Wright S. J.: Effects of finite-precision arithmetic on interior-point methods for nonlinear programming.SIAM J. Optim. 12 (2001), 36–78 Zbl 0994.90139, MR 1870586, 10.1137/S1052623498347438
Reference: [21] Wright S. J., Orban D.: Properties of the Log-barrier Function on Degenerate Nonlinear Programs.Preprint ANL/MCS-P772-0799, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne 1999, revised May 2001 MR 1926660
.

Files

Files Size Format View
Kybernetika_40-2004-5_4.pdf 1.367Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo