Previous |  Up |  Next

Article

Title: Schwarz-like methods for approximate solving cooperative systems (English)
Author: Marek, Ivo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 5
Year: 2004
Pages: [611]-624
Summary lang: English
.
Category: math
.
Summary: The aim of this contribution is to propose and analyze some computational means to approximate solving mathematical problems appearing in some recent studies devoted to biological and chemical networks. (English)
Keyword: Schwarz iterative solution
Keyword: cooperative systems
Keyword: steady states of evolution problems
MSC: 47B60
MSC: 65F10
MSC: 65M55
idZBL: Zbl 1249.65070
idMR: MR2121000
.
Date available: 2009-09-24T20:04:20Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135620
.
Reference: [1] Benzi M., Frommer A., Nabben, R., Szyld D.: Algebraic theory of multiplicative Schwarz methods.Numer. Math. 89 (2002), 605–639 Zbl 0991.65037, MR 1865505, 10.1007/s002110100275
Reference: [2] Benzi M., Szyld D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alterning methods.Numer. Math. 76 (1997), 309–321 MR 1452511, 10.1007/s002110050265
Reference: [3] Berman A., Plemmons R.: Non-negative Matrices in the Mathematical Sciences.Academic Press, New York 1979 MR 0544666
Reference: [4] Bohl E.: A boundary layer phenomenon for linear systems with a rank deficient matrix.Z. Angew. Math. Mech. 7/8 (1991), 223–231 Zbl 0792.65057, MR 1121486, 10.1002/zamm.19910710707
Reference: [5] Bohl E.: Constructing amplification via chemical circuits.In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334
Reference: [6] Bohl E.: Structural amplification in chemical networks.In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128
Reference: [7] Bohl E., Boos W.: Quantitative analysis of binding protein-mediated ABC transport system.J. Theoret. Biol. 186 (1997), 65–74 10.1006/jtbi.1996.0342
Reference: [8] Bohl E., Lancaster P.: Perturbation of spectral inverses applied to a boundary layer phenomenon arizing in chemical networks.Linear Algebra Appl. 180 (1993), 65–74 MR 1206409, 10.1016/0024-3795(93)90524-R
Reference: [9] Bohl E., Marek I.: A model of amplification.J. Comput. Appl. Math. 63 (1995), 27–47 Zbl 0845.92003, MR 1365549, 10.1016/0377-0427(95)00052-6
Reference: [10] Bohl E., Marek I.: A nonlinear model involving M-operators.An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 MR 1354645, 10.1016/0377-0427(94)00081-B
Reference: [11] Bohl E., Marek I.: A stability theorem for a class of linear evolution problems.Integral Equations Operator Theory 34 (1999), 251–269 MR 1689389, 10.1007/BF01300579
Reference: [12] Bohl E., Marek I.: Existence and uniqueness results for nonlinear cooperative systems.Oper. Theory: Adv. Appl. 130 (2001), 153–170 Zbl 1023.47052, MR 1902006
Reference: [13] Hille E., Phillips R. S.: Functional Analysis and Semigroups (Amer.Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968
Reference: [14] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space.Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) Zbl 0030.12902, MR 0027128
Reference: [15] Marek I.: Frobenius theory of positive operators.Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 Zbl 0219.47022, MR 0415405, 10.1137/0119060
Reference: [16] Marek I., Szyld D.: Algebraic Schwarz methods for the numerical solution of Markov chains.Linear Algebra Appl. Submitted Zbl 1050.65030, MR 2066608
Reference: [17] Marek I., Žitný K.: Analytic Theory of Matrices for Applied Sciences, Vol 1.(Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 MR 0731071
Reference: [18] Ortega J. M., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York – San – Francisco – London 1970 Zbl 0949.65053, MR 0273810
Reference: [19] Schaefer H. H.: Banach Lattices and Positive Operators.Springer–Verlag, Berlin – Heidelberg – New York 1974 Zbl 0296.47023, MR 0423039
Reference: [20] Stewart W. J.: Introduction to the Numerical Solution of Markov Chains.Princeton University Press, Princeton, NJ 1994 Zbl 0821.65099, MR 1312831
Reference: [21] Taylor A. E., Lay D. C.: Introduction to Functional Analysis.Second edition. Wiley, New York 1980 Zbl 0654.46002, MR 0564653
Reference: [22] Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E.: Mathematical treatment of transport data of bacterial transport system to estimate limitation in diffusion through the outer membrane.J. Theoret. Biol. 207 (2000), 1–14 10.1006/jtbi.2000.2140
Reference: [23] Varga R. S.: Matrix Iterative Analysis.Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 MR 1753713
.

Files

Files Size Format View
Kybernetika_40-2004-5_7.pdf 1.514Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo