Title:
|
Schwarz-like methods for approximate solving cooperative systems (English) |
Author:
|
Marek, Ivo |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
40 |
Issue:
|
5 |
Year:
|
2004 |
Pages:
|
[611]-624 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this contribution is to propose and analyze some computational means to approximate solving mathematical problems appearing in some recent studies devoted to biological and chemical networks. (English) |
Keyword:
|
Schwarz iterative solution |
Keyword:
|
cooperative systems |
Keyword:
|
steady states of evolution problems |
MSC:
|
47B60 |
MSC:
|
65F10 |
MSC:
|
65M55 |
idZBL:
|
Zbl 1249.65070 |
idMR:
|
MR2121000 |
. |
Date available:
|
2009-09-24T20:04:20Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135620 |
. |
Reference:
|
[1] Benzi M., Frommer A., Nabben, R., Szyld D.: Algebraic theory of multiplicative Schwarz methods.Numer. Math. 89 (2002), 605–639 Zbl 0991.65037, MR 1865505, 10.1007/s002110100275 |
Reference:
|
[2] Benzi M., Szyld D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alterning methods.Numer. Math. 76 (1997), 309–321 MR 1452511, 10.1007/s002110050265 |
Reference:
|
[3] Berman A., Plemmons R.: Non-negative Matrices in the Mathematical Sciences.Academic Press, New York 1979 MR 0544666 |
Reference:
|
[4] Bohl E.: A boundary layer phenomenon for linear systems with a rank deficient matrix.Z. Angew. Math. Mech. 7/8 (1991), 223–231 Zbl 0792.65057, MR 1121486, 10.1002/zamm.19910710707 |
Reference:
|
[5] Bohl E.: Constructing amplification via chemical circuits.In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334 |
Reference:
|
[6] Bohl E.: Structural amplification in chemical networks.In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128 |
Reference:
|
[7] Bohl E., Boos W.: Quantitative analysis of binding protein-mediated ABC transport system.J. Theoret. Biol. 186 (1997), 65–74 10.1006/jtbi.1996.0342 |
Reference:
|
[8] Bohl E., Lancaster P.: Perturbation of spectral inverses applied to a boundary layer phenomenon arizing in chemical networks.Linear Algebra Appl. 180 (1993), 65–74 MR 1206409, 10.1016/0024-3795(93)90524-R |
Reference:
|
[9] Bohl E., Marek I.: A model of amplification.J. Comput. Appl. Math. 63 (1995), 27–47 Zbl 0845.92003, MR 1365549, 10.1016/0377-0427(95)00052-6 |
Reference:
|
[10] Bohl E., Marek I.: A nonlinear model involving M-operators.An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 MR 1354645, 10.1016/0377-0427(94)00081-B |
Reference:
|
[11] Bohl E., Marek I.: A stability theorem for a class of linear evolution problems.Integral Equations Operator Theory 34 (1999), 251–269 MR 1689389, 10.1007/BF01300579 |
Reference:
|
[12] Bohl E., Marek I.: Existence and uniqueness results for nonlinear cooperative systems.Oper. Theory: Adv. Appl. 130 (2001), 153–170 Zbl 1023.47052, MR 1902006 |
Reference:
|
[13] Hille E., Phillips R. S.: Functional Analysis and Semigroups (Amer.Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968 |
Reference:
|
[14] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space.Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) Zbl 0030.12902, MR 0027128 |
Reference:
|
[15] Marek I.: Frobenius theory of positive operators.Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 Zbl 0219.47022, MR 0415405, 10.1137/0119060 |
Reference:
|
[16] Marek I., Szyld D.: Algebraic Schwarz methods for the numerical solution of Markov chains.Linear Algebra Appl. Submitted Zbl 1050.65030, MR 2066608 |
Reference:
|
[17] Marek I., Žitný K.: Analytic Theory of Matrices for Applied Sciences, Vol 1.(Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 MR 0731071 |
Reference:
|
[18] Ortega J. M., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York – San – Francisco – London 1970 Zbl 0949.65053, MR 0273810 |
Reference:
|
[19] Schaefer H. H.: Banach Lattices and Positive Operators.Springer–Verlag, Berlin – Heidelberg – New York 1974 Zbl 0296.47023, MR 0423039 |
Reference:
|
[20] Stewart W. J.: Introduction to the Numerical Solution of Markov Chains.Princeton University Press, Princeton, NJ 1994 Zbl 0821.65099, MR 1312831 |
Reference:
|
[21] Taylor A. E., Lay D. C.: Introduction to Functional Analysis.Second edition. Wiley, New York 1980 Zbl 0654.46002, MR 0564653 |
Reference:
|
[22] Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E.: Mathematical treatment of transport data of bacterial transport system to estimate limitation in diffusion through the outer membrane.J. Theoret. Biol. 207 (2000), 1–14 10.1006/jtbi.2000.2140 |
Reference:
|
[23] Varga R. S.: Matrix Iterative Analysis.Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 MR 1753713 |
. |