Previous |  Up |  Next

Article

Title: On approximation in multistage stochastic programs: Markov dependence (English)
Author: Kaňková, Vlasta
Author: Šmíd, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 5
Year: 2004
Pages: [625]-638
Summary lang: English
.
Category: math
.
Summary: A general multistage stochastic programming problem can be introduced as a finite system of parametric (one-stage) optimization problems with an inner type of dependence. Evidently, this type of the problems is rather complicated and, consequently, it can be mostly solved only approximately. The aim of the paper is to suggest some approximation solution schemes. To this end a restriction to the Markov type of dependence is supposed. (English)
Keyword: multistage stochastic programming problem
Keyword: approximation solution scheme
Keyword: deterministic approximation
Keyword: empirical estimate
Keyword: Markov dependence
MSC: 60K30
MSC: 90C15
MSC: 90C59
idZBL: Zbl 1249.90183
idMR: MR2121001
.
Date available: 2009-09-24T20:04:28Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135621
.
Reference: [1] Anděl J.: Mathematical Statistics (in Czech).SNTL, Prague 1985
Reference: [2] Dal L., Chen C. H., Birge J. R.: Convergence properties of two-stage stochastic programming.J. Optim. Theory Appl. 106 (2000), 3, 489–509 MR 1797371, 10.1023/A:1004649211111
Reference: [3] Dupačová J., Wets R. J.-B.: Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems.Ann. Statist. 16 (1984), 1517–1549 MR 0964937, 10.1214/aos/1176351052
Reference: [4] Dupačová J.: Multistage stochastic programs: The state-of-the-art and selected bibliography.Kybernetika 31 (1995), 151–174 Zbl 0860.90093, MR 1334507
Reference: [5] Hoeffding W.: Probability inequalities for sums of bounded random variables.J. Amer. Statist. Assoc. 38 (1963), 13–30 Zbl 0127.10602, MR 0144363, 10.1080/01621459.1963.10500830
Reference: [6] Houda M.: Stability and Estimates in Stochastic Programming (Special Cases) (in Czech).Diploma Work. Faculty of Mathematics and Physics, Charles University, Prague 2001
Reference: [7] Kaňková V.: An approximative solution of stochastic optimization problem.In: Trans. Eighth Prague Conference, Academia, Prague 1978, pp. 349–353
Reference: [8] Kaňková V.: Approximative solution of problems of two–stage stochastic nonlinear programming (in Czech).Ekonomicko–matematický obzor 16 (1980), 1, 64–76 MR 0571742
Reference: [9] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming.Informatica 3 (1992), 4, 497–522 Zbl 0906.90133, MR 1243755
Reference: [10] Kaňková V.: A note on estimates in stochastic programming.J. Comput. Math. 56 (1994), 97–112 MR 1338638, 10.1016/0377-0427(94)90381-6
Reference: [11] Kaňková V.: A note on multistage stochastic programming.In: Proc. 11th joint Czech–Germany–Slovak Conference: Mathematical Methods in Economy and Industry. University of Technology, Liberec (Czech Republic) 1998, pp. 45–52
Reference: [12] Kaňková V.: A remark on the analysis of multistage stochastic programs: Markov dependence.Z. angew. Math. Mech. 82 (2002), 11–12, 781–793 Zbl 1028.90031, MR 1944422
Reference: [13] Kaňková V.: A remark on empirical estimates in multistage stochastic programming.Bulletin of the Czech Econometric Society 17/2002, 32–51
Reference: [14] Kaňková V., Šmíd M.: A Remark on Approximation in Multistage Stochastic Programs; Markov Dependence.Research Report ÚTIA AS CR, No. 2102, July 2004 MR 2121001
Reference: [15] Pfug G. Ch.: Optimization of Stochastic Models; The Interface Between Simulation and Optimization.Kluwer, London 1996 MR 1492446
Reference: [16] Prékopa A.: Stochastic Programming.Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995 Zbl 1219.90114, MR 1375234
Reference: [17] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models.Wiley, Chichester 1991 Zbl 0744.60004, MR 1105086
Reference: [18] Römisch W., Wakolbinger A.: Obtaining convergence rate for approximations in stochastic programming.In: Parametric Optimization and Related Topics (J. Guddat, ed.), Akademie Verlag, Berlin 1987, pp. 327–343 MR 0909737
Reference: [19] Römisch W., Schulz R.: Stability of solutions for stochastic programs with complete recourse.Math. Oper. Res. 18 (1993), 590–609 MR 1250562, 10.1287/moor.18.3.590
Reference: [20] Shapiro A.: Quantitative stability in stochastic programming.Math. Programming 67 (1994), 99–108 Zbl 0828.90099, MR 1300821, 10.1007/BF01582215
Reference: [21] Serfling J. R.: Approximation Theorems of Mathematical Statistics.Wiley, New York 1980 Zbl 1001.62005, MR 0595165
Reference: [22] Šmíd M.: Notes on Approximate Computation of Expectation.Research Report ÚTIA AS CR, No. 2077, May 2003
Reference: [23] Schulz R.: Rates of convergence in stochastic programs with complete integer recourse.SIAM J. Optim. 6 (1996), 1138–1152 MR 1416533, 10.1137/S1052623494271655
Reference: [24] Vallander S. S.: Calculation of the Wasserstein distance between probability distributions on the line (in Russian).Theor. Prob. Appl. 18 (1973), 783–76 MR 0328982
Reference: [25] Vogel S.: On stability in multiobjective programming – a stochastic approach.Math. Programming 56 (1992), 91–119 Zbl 0770.90061, MR 1175561, 10.1007/BF01580896
Reference: [26] Wang J.: Continuity of the feasible solution sets of probabilistic constrained programs.J. Optim. Theory Appl. 63 (1994), 1, 79–89 MR 1022368, 10.1007/BF00940733
.

Files

Files Size Format View
Kybernetika_40-2004-5_8.pdf 1.577Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo