Title:
|
An application of nonprarametric Cox regression model in reliability analysis: a case study (English) |
Author:
|
Volf, Petr |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
40 |
Issue:
|
5 |
Year:
|
2004 |
Pages:
|
[639]-648 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The contribution deals with an application of the nonparametric version of Cox regression model to the analysis and modeling of the failure rate of technical devices. The objective is to recall the method of statistical analysis of such a model, to adapt it to the real–case study, and in such a way to demonstrate the flexibility of the Cox model. The goodness-of-fit of the model is tested, too, with the aid of the graphical test procedure based on generalized residuals. (English) |
Keyword:
|
hazard rate |
Keyword:
|
counting process |
Keyword:
|
Cox model |
Keyword:
|
nonparametric regression |
Keyword:
|
local likelihood |
Keyword:
|
time-to-failure |
MSC:
|
05C90 |
MSC:
|
60G55 |
MSC:
|
62G08 |
MSC:
|
62N05 |
MSC:
|
90B25 |
idZBL:
|
Zbl 1248.62193 |
idMR:
|
MR2121002 |
. |
Date available:
|
2009-09-24T20:04:38Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135622 |
. |
Reference:
|
[1] Andersen P. K., Borgan O., Gill R. D., Keiding N.: Statistical Models Based on Counting Processes.Springer, New York 1993 Zbl 0824.60003, MR 1198884 |
Reference:
|
[2] Arjas E.: A graphical method for assesing goodnes of fit in Cox’s proportional hazard model.J. Amer. Statist. Assoc. 83 (1988), 204–212 10.1080/01621459.1988.10478588 |
Reference:
|
[3] Arjas E., Liu L.: Assessing the losses caused by an industrial intervention – a hiearchical Bayesian approach.J. Roy. Statist. Soc. Ser. C 44 (1995), 357–368 |
Reference:
|
[4] Fan J., Gijbels I.: Local Polynomial Modelling and Its Applications.Chapman and Hall, London 1996 Zbl 0873.62037, MR 1383587 |
Reference:
|
[5] Gentleman R., Crowley J.: Local full likelihood estimation for the proportional hazard model.Biometrics 47 (1991), 1283–1296 MR 1157661, 10.2307/2532386 |
Reference:
|
[6] Hastie T., Tibshirani R.: Generalized Additive Models.Chapman and Hall, London 1990 Zbl 0747.62061, MR 1082147 |
Reference:
|
[7] Kalbfleisch J. D., Struthers C. A.: An analysis of the Reynolds Metals Company data.In: Case Studies in Data Analysis, Canad. J. Statist. 10 (1982), 237–259 10.2307/3556191 |
Reference:
|
[8] Kooperberg C., Stone C. J., Truong Y. K.: The $L_2$ rate of convergence for hazard regression.Scand. J. Statist. 22 (1995), 143–157 MR 1339748 |
Reference:
|
[9] Marzec L., Marzec P.: Generalized martingale-residual processes for goodness-of-fit inference in Cox’s type regression model.Ann. Statist. 25 (1997), 683–714 MR 1439319, 10.1214/aos/1031833669 |
Reference:
|
[10] O’Sullivan F.: Nonparametric estimation in the Cox model.Ann. Statist. 21 (1993), 124–145 Zbl 0782.62046, MR 1212169, 10.1214/aos/1176349018 |
Reference:
|
[11] Stone C. J.: The use of polynomial splines and their tensor products in multivariate function estimation; with discussion.Ann. Statist. 22 (1994), 118–184 Zbl 0827.62038, MR 1272079, 10.1214/aos/1176325361 |
Reference:
|
[12] Thomas D. C.: Case analysis using Cox’s model.In: Case Studies in Data Analysis. Canad. J. Statist. 10 (1982), 237–259 10.2307/3556191 |
Reference:
|
[13] Volf P.: A large sample study of nonparametric proportion hazard regression model.Kybernetika 29 (1993), 404–415 MR 1079678 |
Reference:
|
[14] Volf P.: Analysis of generalized residuals in hazard regression models.Kybernetika 32 (1996), 501–510 Zbl 0882.62077, MR 1420139 |
. |