Previous |  Up |  Next

Article

Keywords:
linear systems; model matching; state feedback; dynamic compensation
Summary:
The problem of model matching by state feedback is reconsidered and some of the latest results are discussed.
References:
[1] Furhmann P. A., Willems J. C.: The factorization indices for rational matrix functions. Integral Equations Operator Theory 2 (1979), 281–301
[2] Hautus M. L. J., Heymann M.: Linear feedback. An algebraic approach. SIAM J. Control Optim. 16 (1978), 83–105 DOI 10.1137/0316007 | MR 0476024 | Zbl 0385.93015
[3] Herrera A. N., Lafay J.-F., Zagalak P.: The extended interactor in the study of non-regular control problems. In: Proc. 30th Conference on Decision and Control, IEEE, Brighton 1991, pp. 373–377
[4] Kailath T.: Linear Systems Theory. Prentice Hall, Englewood Cliffs, NJ 1980 MR 0569473
[5] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Prentice Hall International, London 1992 MR 1182311 | Zbl 0762.93060
[6] Lafay J.-F., Zagalak, P., Herrera A. N.: Reduced form of the interactor matrix. IEEE Trans. Automat. Control AC-37 (1992), 11, 1778–1782 DOI 10.1109/9.173150 | MR 1195221 | Zbl 0778.93034
[7] Malabre M., Kučera V.: Infinite zero structure and exact model matching problem: A geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 266–268 DOI 10.1109/TAC.1984.1103502
[8] Morse A. S.: Structural invariants of multivariable systems. SIAM J. Control Optim. 11 (1973), 446–465 DOI 10.1137/0311037 | MR 0386762
[9] Morse A. S.: Structure and design of linear model following systems. IEEE Trans. Automat. Control AC-18 (1973), 346–354 DOI 10.1109/TAC.1973.1100342 | MR 0452941 | Zbl 0264.93005
[10] Morse A. S.: Systems invariants under feedback and cascade control. In: Proc. Internat. Symposium on Mathematical System Theory, Udine 1975, pp. 61–74 MR 0688151
[11] Moore B. C., Silvermann M.: Model matching by state feedback and dynamic compensation. IEEE Trans. Automat. Control AC-17 (1972), 491–497 DOI 10.1109/TAC.1972.1100032
[12] Pernebo L.: An algabraic theory for The desgin of controllers for multivariable systems. Part II: Feedback realization and feedback design. IEEE Trans. Automat. Control AC-26 (1981), 183–194 DOI 10.1109/TAC.1981.1102553 | MR 0609259
[13] Torres J., Zagalak P.: A note on model matching by state feedback. Preprints 2nd IFAC Conference on System Structure and Control, ECN de Nantes, Nantes 1998, pp. 191–195
[14] Verghese G., Kailath T.: Rational matrix structure. IEEE Trans. Automat. Control 26 (1981), 434–439 DOI 10.1109/TAC.1981.1102593 | MR 0613549 | Zbl 0475.93032
[15] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge MA 1985 MR 0787045 | Zbl 0655.93001
[16] Wolovich W. A.: The use of state feedback for exact model matching. SIAM J. Control Optim. 10 (1972), 512–523 DOI 10.1137/0310039 | MR 0317811 | Zbl 0241.93008
[17] Wolovich W. A., Falb P.: Invariants and canonical form under dynamic compensation. SIAM J. Control Optim. 14 (1976), 996–1008 DOI 10.1137/0314063 | MR 0424306
[18] Zagalak P., Lafay J.-F., Herrera-Hernandez A. N.: The row-by-row decoupling via state feedback: A polynomial approach. Automatica 29 (1993), 1491–1499 DOI 10.1016/0005-1098(93)90012-I | MR 1252965 | Zbl 0790.93075
[19] Zagalak P., Torres J.: Model matching by state feedback. In: 5th Workshop on Nonlinear, Adaptive and Linear Systems, CINVESTAV del IPN, Mexico D. F. 1998, p. 21
Partner of
EuDML logo