Title:
|
Equivalent fuzzy sets (English) |
Author:
|
Šešelja, Branimir |
Author:
|
Tepavčević, Andreja |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
41 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
[115]-128 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Necessary and sufficient conditions under which two fuzzy sets (in the most general, poset valued setting) with the same domain have equal families of cut sets are given. The corresponding equivalence relation on the related fuzzy power set is investigated. Relationship of poset valued fuzzy sets and fuzzy sets for which the co-domain is Dedekind-MacNeille completion of that posets is deduced. (English) |
Keyword:
|
poset valued fuzzy set |
Keyword:
|
cut |
Keyword:
|
equivalent fuzzy sets |
Keyword:
|
Dedekind- MacNeille completion |
MSC:
|
03B52 |
MSC:
|
03E72 |
MSC:
|
06A15 |
idZBL:
|
Zbl 1249.03088 |
idMR:
|
MR2138763 |
. |
Date available:
|
2009-09-24T20:07:34Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135645 |
. |
Reference:
|
[1] Alkhamees Y.: Fuzzy cyclic subgroups and fuzzy cyclic p-subgroups.J. Fuzzy Math. 3 (1995), 4, 911–919 Zbl 0843.20056, MR 1367024 |
Reference:
|
[2] Birkhoff G.: Lattice Theory.Amer. Math. Society, Providence, RI 1967 Zbl 0537.06001, MR 0227053 |
Reference:
|
[3] Davey B. A., Priestley H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge 1992 Zbl 1002.06001, MR 1902334 |
Reference:
|
[4] al. G. Gierz et: A Compendium of Continuous Lattices.Springer–Verlag, Berlin 1980 Zbl 0452.06001, MR 0614752 |
Reference:
|
[5] Goguen J. A.: $L$-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174 Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8 |
Reference:
|
[6] Luo Y. M. Liu amd M. K.: Fuzzy Topology.World Scientific, Singapore – New Jersey – Hong Kong 1997 MR 1643076 |
Reference:
|
[7] Makamba B. B.: Studies in Fuzzy Groups.Ph.D. Thesis, Rhodes University, Grahamstown 1992 |
Reference:
|
[8] Murali V., Makamba B. B.: On an equivalence of fuzzy subgroups I.Fuzzy Sets and Systems 123 (2001), 259–264 Zbl 1009.20080, MR 1849411 |
Reference:
|
[9] Negoita C. V., Ralescu D. A.: Applications of Fuzzy Sets to System Analysis.Birkhäuser–Verlag, Basel 1975 MR 0490083 |
Reference:
|
[10] Šešelja B.: Fuzzy structures and collections of level structures.BUSEFAL 61 (1995), 5–8 |
Reference:
|
[11] Šešelja B., Tepavčević A.: On generalizations of fuzzy algebras and congruences.Fuzzy Sets and Systems 65 (1994), 85–94 10.1016/0165-0114(94)90249-6 |
Reference:
|
[12] Šešelja B., Tepavčević A.: Fuzzy groups and collection of subgroups.Fuzzy Sets and Systems 83 (1996), 85–91 10.1016/0165-0114(95)00332-0 |
Reference:
|
[13] Šeselja B., Tepavčević A.: Completion of ordered structures by cuts of fuzzy sets.An overview. Fuzzy Sets and Systems 136 (2003), 1–19 Zbl 1020.06005, MR 1978466 |
Reference:
|
[14] Šeselja B., Tepavčević A.: Representing ordered structures by fuzzy sets.An overview. Fuzzy Sets and Systems 136 (2003), 21–39 Zbl 1026.03039, MR 1978467 |
Reference:
|
[15] Šeselja B., Tepavčević A.: A note on natural equivalence relation on fuzzy power set.Fuzzy Sets and Systems 148 (2004), 201–210 |
. |