Previous |  Up |  Next

Article

Title: Equivalent fuzzy sets (English)
Author: Šešelja, Branimir
Author: Tepavčević, Andreja
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [115]-128
Summary lang: English
.
Category: math
.
Summary: Necessary and sufficient conditions under which two fuzzy sets (in the most general, poset valued setting) with the same domain have equal families of cut sets are given. The corresponding equivalence relation on the related fuzzy power set is investigated. Relationship of poset valued fuzzy sets and fuzzy sets for which the co-domain is Dedekind-MacNeille completion of that posets is deduced. (English)
Keyword: poset valued fuzzy set
Keyword: cut
Keyword: equivalent fuzzy sets
Keyword: Dedekind- MacNeille completion
MSC: 03B52
MSC: 03E72
MSC: 06A15
idZBL: Zbl 1249.03088
idMR: MR2138763
.
Date available: 2009-09-24T20:07:34Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135645
.
Reference: [1] Alkhamees Y.: Fuzzy cyclic subgroups and fuzzy cyclic p-subgroups.J. Fuzzy Math. 3 (1995), 4, 911–919 Zbl 0843.20056, MR 1367024
Reference: [2] Birkhoff G.: Lattice Theory.Amer. Math. Society, Providence, RI 1967 Zbl 0537.06001, MR 0227053
Reference: [3] Davey B. A., Priestley H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge 1992 Zbl 1002.06001, MR 1902334
Reference: [4] al. G. Gierz et: A Compendium of Continuous Lattices.Springer–Verlag, Berlin 1980 Zbl 0452.06001, MR 0614752
Reference: [5] Goguen J. A.: $L$-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174 Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8
Reference: [6] Luo Y. M. Liu amd M. K.: Fuzzy Topology.World Scientific, Singapore – New Jersey – Hong Kong 1997 MR 1643076
Reference: [7] Makamba B. B.: Studies in Fuzzy Groups.Ph.D. Thesis, Rhodes University, Grahamstown 1992
Reference: [8] Murali V., Makamba B. B.: On an equivalence of fuzzy subgroups I.Fuzzy Sets and Systems 123 (2001), 259–264 Zbl 1009.20080, MR 1849411
Reference: [9] Negoita C. V., Ralescu D. A.: Applications of Fuzzy Sets to System Analysis.Birkhäuser–Verlag, Basel 1975 MR 0490083
Reference: [10] Šešelja B.: Fuzzy structures and collections of level structures.BUSEFAL 61 (1995), 5–8
Reference: [11] Šešelja B., Tepavčević A.: On generalizations of fuzzy algebras and congruences.Fuzzy Sets and Systems 65 (1994), 85–94 10.1016/0165-0114(94)90249-6
Reference: [12] Šešelja B., Tepavčević A.: Fuzzy groups and collection of subgroups.Fuzzy Sets and Systems 83 (1996), 85–91 10.1016/0165-0114(95)00332-0
Reference: [13] Šeselja B., Tepavčević A.: Completion of ordered structures by cuts of fuzzy sets.An overview. Fuzzy Sets and Systems 136 (2003), 1–19 Zbl 1020.06005, MR 1978466
Reference: [14] Šeselja B., Tepavčević A.: Representing ordered structures by fuzzy sets.An overview. Fuzzy Sets and Systems 136 (2003), 21–39 Zbl 1026.03039, MR 1978467
Reference: [15] Šeselja B., Tepavčević A.: A note on natural equivalence relation on fuzzy power set.Fuzzy Sets and Systems 148 (2004), 201–210
.

Files

Files Size Format View
Kybernetika_41-2005-2_2.pdf 1.602Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo