Previous |  Up |  Next

Article

Title: Generalized homogeneous, prelattice and MV-effect algebras (English)
Author: Riečanová, Zdenka
Author: Marinová, Ivica
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [129]-142
Summary lang: English
.
Category: math
.
Summary: We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra $P$ are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra $P$ is a union of generalized MV-effect algebras and every generalized homogeneous effect algebra is a union of its maximal sub-generalized effect algebras with hereditary Riesz decomposition property (blocks). Properties of sharp elements, the center and center of compatibility of $P$ are shown. We prove that on every generalized MV-effect algebra there is a bounded orthogonally additive measure. (English)
Keyword: effect algebra
Keyword: generalized effect algebra
Keyword: generalized MV- effect algebra
Keyword: prelattice and homogeneous generalized effect algebra
MSC: 03B50
MSC: 03G12
MSC: 03G25
MSC: 06D35
MSC: 81P10
idZBL: Zbl 1249.03122
idMR: MR2138764
.
Date available: 2009-09-24T20:07:41Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135646
.
Reference: [1] Chang C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 MR 1861369
Reference: [3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346 MR 1304942, 10.1007/BF02283036
Reference: [4] Gudder S. P.: D-algebras.Found. Phys. 26 (1996), 813–822 MR 1407184
Reference: [5] Hájek P.: Mathematics of Fuzzy Logic.Kluwer Academic Publishers, Dordrecht 1998 MR 1900263
Reference: [6] Hedlíková J., Pulmannová S.: Generalized difference posets and orthoalgebras.Acta Math. Univ. Comenianae 45 (1996), 247–279 Zbl 0922.06002, MR 1451174
Reference: [7] Janowitz M. F.: A note on generalized orthomodular lattices.J. Natur. Sci. Math. 8 (1968), 89–94 Zbl 0169.02104, MR 0231762
Reference: [8] Jenča G.: Blocks of homogeneous effect algebras.Bull. Austral. Math. Soc. 64 (2001), 81–98 Zbl 0985.03063, MR 1848081, 10.1017/S0004972700019705
Reference: [9] Jenča G., Riečanová Z.: On sharp elements in lattice ordered effect algebras.BUSEFAL 80 (1999), 24–29
Reference: [10] Kalmbach G.: Orthomodular Lattices.Academic Press, London – New York 1983 Zbl 0554.06009, MR 0716496
Reference: [11] Kôpka F.: Compatibility in D-posets.Internat. J. Theor. Phys. 34 (1995), 1525–1531 Zbl 0851.03020, MR 1353696, 10.1007/BF00676263
Reference: [12] Kôpka F., Chovanec F.: Boolean D-posets.Tatra Mt. Math. Publ. 10 (1997), 183–197 Zbl 0915.03052, MR 1469294
Reference: [14] Riečanová Z.: Subalgebras, intervals and central elements of generalized effect algebras.Internat. J. Theor. Phys. 38 (1999), 3209–3220 Zbl 0963.03087, MR 1764459, 10.1023/A:1026682215765
Reference: [15] Riečanová Z.: Compatibilty and central elements in effect algebras.Tatra Mt. Math. Publ. 16 (1999), 151–158
Reference: [16] Riečanová Z.: Generalization of blocks for $D$-lattices and lattice ordered effect algebras.Internat. J. Theor. Phys. 39 (2000), 231–237 Zbl 0968.81003, MR 1762594, 10.1023/A:1003619806024
Reference: [17] Riečanová Z.: Orthogonal sets in effect algebras.Demonstratio Mathematica 34 (2001), 525–532 MR 1853730
Reference: [18] Wilce A.: Perspectivity and congruence in partial Abelian semigroups.Math. Slovaca 48 (1998), 117–135 Zbl 0938.03094, MR 1647650
.

Files

Files Size Format View
Kybernetika_41-2005-2_3.pdf 1.862Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo