Previous |  Up |  Next

Article

Title: Semicopulæ (English)
Author: Durante, Fabrizio
Author: Sempi, Carlo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [315]-328
Summary lang: English
.
Category: math
.
Summary: We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, $t$-norm. (English)
Keyword: semicopula
Keyword: copula
Keyword: quasi-copula
Keyword: aggregation operator
Keyword: $t$-norm
MSC: 26B35
MSC: 60E05
idZBL: Zbl 1249.26021
idMR: MR2181421
.
Date available: 2009-09-24T20:09:08Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135658
.
Reference: [1] Agell N.: On the concavity of t-norms and triangular functions.Stochastica 8 (1984), 91–95 Zbl 0567.26010, MR 0780142
Reference: [2] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y
Reference: [3] Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes.J. Multivariate Anal. 93 (2005), 313–339 Zbl 1070.60015, MR 2162641, 10.1016/j.jmva.2004.04.002
Reference: [4] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 Zbl 1039.03015, MR 1936383
Reference: [5] Calvo T., Mesiar R.: Stability of aggregation operators.In: Proc. EUSFLAT 2001, Leicester 2001, pp. 475–478 MR 1821982
Reference: [6] Calvo T., Pradera A.: Double aggregation operators.Fuzzy Sets and Systems 142 (2004), 15–33 Zbl 1081.68105, MR 2045340, 10.1016/j.fss.2003.10.029
Reference: [7] Dunford N., Schwartz J. T.: Linear Operators.Part I: General Theory. Wiley, New York 1958 Zbl 0635.47003, MR 1009162
Reference: [8] Durante F., Sempi C.: On the characterization of a class of binary operations on bivariate distribution functions.Submitted Zbl 1121.60010
Reference: [9] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections.In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 Zbl 0906.60022, MR 1614666
Reference: [10] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas.In: Distributions with given marginals and statistical problems (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl 1135.62334, MR 2058982
Reference: [11] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 MR 1703371, 10.1006/jmva.1998.1809
Reference: [12] Kelley J. L.: General Topology.Van Nostrand, New York 1955; reprinted by Springer, New York – Heidelberg – Berlin 1975 Zbl 0066.16604, MR 0070144
Reference: [13] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [14] Kolesárová A.: $1$-Lipschitz aggregation operators and quasi-copulas.Kybernetika 39 (2003), 615–629 MR 2042344
Reference: [15] Mikusiński P., Sherwood, H., Taylor M. D.: The Fréchet bounds revisited.Real Anal. Exchange 17 (1991), 759–764 MR 1171416
Reference: [16] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [17] Nelsen R. B., Fredricks G. A.: Diagonal copulas.In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–128 Zbl 0906.60021, MR 1614665
Reference: [18] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions.In: Distributions With Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), (IMS Lecture Notes – Monogr. Ser. 28), Inst. Math. Statist., Hayward 1996, pp. 233–243 MR 1485535
Reference: [19] Nelsen R. B., Flores M. Úbeda: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas.Submitted
Reference: [20] Schweizer B., Sklar A.: Probabilistic Metric Spaces.Elsevier, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [21] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Reference: [22] Sklar A.: Random variables, joint distribution functions and copulas.Kybernetika 9 (1973), 449–460 Zbl 0292.60036, MR 0345164
Reference: [23] Suarez F., Gil P.: Two families of fuzzy integrals.Fuzzy Sets and Systems 18 (1986), 67–81 Zbl 0595.28011, MR 0825620, 10.1016/0165-0114(86)90028-X
Reference: [24] Szász G.: Introduction to Lattice Theory.Academic Press, New York 1963 Zbl 0126.03703, MR 0166118
Reference: [25] Flores M. Úbeda: Cópulas y quasicópulas: interrelaciones y nuevas propiedades.Aplicaciones. Ph. D. Dissertation. Universidad de Almería, Servicio de Publicaciones de la Universidad de Almería 2002
.

Files

Files Size Format View
Kybernetika_41-2005-3_4.pdf 1.418Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo