Previous |  Up |  Next

Article

Title: Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators (English)
Author: Klement, Erich Peter
Author: Kolesárová, Anna
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [329]-348
Summary lang: English
.
Category: math
.
Summary: Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist). (English)
Keyword: copula
Keyword: quasi-copula
Keyword: $1$-Lipschitz aggregation operator
Keyword: diagonal
MSC: 26B99
MSC: 60E05
idZBL: Zbl 1249.60017
idMR: MR2181422
.
Date available: 2009-09-24T20:09:15Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135659
.
Reference: [1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y
Reference: [2] Bertino S.: On dissimilarity between cyclic permutations.Metron 35 (1977), 53–88. In Italian MR 0600402
Reference: [3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl 1039.03015, MR 1936383
Reference: [4] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section.Soft Computing (accepted for publication) Zbl 1098.60016
Reference: [5] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866
Reference: [6] Frank M. J.: Diagonals of copulas and Schröder’s equation.Aequationes Math. 51 (1996), 150
Reference: [7] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 Zbl 0906.60022, MR 1614666
Reference: [8] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas.In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl 1135.62334, MR 2058982
Reference: [9] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999) 193–205 MR 1703371, 10.1006/jmva.1998.1809
Reference: [10] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [11] Kolesárová A.: $1$-Lipschitz aggregation operators and quasi-copulas.Kybernetika 39 (2003), 615–629 MR 2042344
Reference: [12] Kolesárová A., Mordelová J.: $1$-Lipschitz and kernel aggregation operators.In: Proc. AGOP ’2001, Oviedo 2001, pp. 71–76
Reference: [13] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [14] Nelsen R. B., Fredricks G. A.: Diagonal copulas.In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–127 Zbl 0906.60021, MR 1614665
Reference: [15] Nelsen R. B., Molina J. J. Quesada, Lallena J. A. Rodríguez, Flores M. Úbeda: Best-possible bounds on sets of bivariate distribution functions.J. Multivariate Anal. 90 (2004), 348–358 MR 2081783, 10.1016/j.jmva.2003.09.002
Reference: [16] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [17] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Reference: [18] Sklar A.: Random variables, joint distribution functions, and copulas.Kybernetika 9 (1973), 449–460 Zbl 0292.60036, MR 0345164
Reference: [19] Sungur E. A., Yang Y.: Diagonal copulas of Archimedean class.Comm. Statist. Theory Methods 25 (1996), 1659–1676 Zbl 0900.62339, MR 1411104, 10.1080/03610929608831791
.

Files

Files Size Format View
Kybernetika_41-2005-3_5.pdf 2.333Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo