Previous |  Up |  Next

Article

Title: Fuzzy distances (English)
Author: Bednář, Josef
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [375]-388
Summary lang: English
.
Category: math
.
Summary: In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to $\mathbb{R}^{n}$ are dealt with in detail. (English)
Keyword: fuzzy metric
Keyword: fuzzy distance
Keyword: fuzzy metric space
Keyword: fuzzy contraction
MSC: 03B52
MSC: 03E72
MSC: 11J99
MSC: 47H10
MSC: 54A40
MSC: 54E35
MSC: 54H25
idZBL: Zbl 1249.54013
idMR: MR2181425
.
Date available: 2009-09-24T20:09:39Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135662
.
Reference: [1] Bednář J.: The fuzzy rational database system FSearch 2.0. In: Proc. 6th Internat. Conference on Soft Computing MENDEL, Brno 2000, pp. 232–237
Reference: [2] Bednář J.: Properties of fuzzy metrics on $R^{n}$.In: Proc. East West Fuzzy Colloquium 2002 and 10th Zittau Fuzzy Colloquium, Zittau 2002, pp. 2–6
Reference: [3] Gerla G., Volpe R.: The definition of distance and diameter in fuzzy set theory.Stutia Univ. Babes–Bolyai Math. 31 (1986), 21–26 Zbl 0594.54004, MR 0911862
Reference: [4] Kaleva O., Seikkala S.: On fuzzy metric spaces.Fuzzy Sets and Systems 12 (1984), 215–229 Zbl 0558.54003, MR 0740095, 10.1016/0165-0114(84)90069-1
Reference: [5] Klir G., Yuan B.: Fuzzy Set and Fuzzy Logic: Theory and Applications.Prentice Hall, Englewood Cliffs, NJ 1995 MR 1329731
Reference: [6] Mareš M.: Computation over Fuzzy Quantities.CRC Press, Boca Raton 1994 Zbl 0859.94035, MR 1327525
Reference: [7] Osman A.: Fuzzy metric spaces and fixed fuzzy set theorem.Bull. Malaysian Math. Soc. 6 (1983), 1, 1–4 MR 0733877
Reference: [8] Rudin W.: Real and Complex Analysis.McGraw–Hill, New York 1984 Zbl 1038.00002
Reference: [9] Szmidt E., Kacprzyk J.: Distances between intuitionistic fuzzy sets.Fuzzy Sets and Systems 114 (2000), 505–518 Zbl 0961.03050, MR 1775286, 10.1016/S0165-0114(98)00244-9
.

Files

Files Size Format View
Kybernetika_41-2005-3_8.pdf 2.151Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo