Previous |  Up |  Next

Article

Title: A spectral theorem for $\sigma$ MV-algebras (English)
Author: Pulmannová, Sylvia
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 3
Year: 2005
Pages: [361]-374
Summary lang: English
.
Category: math
.
Summary: MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: {\mathcal{B}}([0,1])\rightarrow {\mathcal{B}}(M)$ can be associated, where ${\mathcal{B}}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables. (English)
Keyword: MV-algebras
Keyword: Loomis–Sikorski theorem
Keyword: tribe
Keyword: spectral decomposition
Keyword: lattice effect algebras
Keyword: compatibility
Keyword: block
MSC: 03G12
MSC: 81P10
idZBL: Zbl 1249.03119
idMR: MR2181424
.
Date available: 2009-09-24T20:09:31Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135661
.
Reference: [1] Belluce L. P.: Semisimple algebras of infinite valued logic and Bold fuzzy set theory.Canad. J. Math. 38 (1986), 1356–1379 Zbl 0625.03009, MR 0873417, 10.4153/CJM-1986-069-0
Reference: [2] Busch P., Lahti P. J., Mittelstaedt P.: The Quantum Theory of Measurement.Springer–Verlag, Berlin 1991 Zbl 0868.46051, MR 1176754
Reference: [3] Butnariu D., Klement E.: Triangular-norm-based measures and their Markov kernel representation.J. Math. Anal. Appl. 162 (1991), 111–143 Zbl 0751.60003, MR 1135265, 10.1016/0022-247X(91)90181-X
Reference: [4] Barbieri G., Weber H.: Measures on clans and on MV-algebras.In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945 Zbl 1019.28009, MR 1954632
Reference: [5] Cattaneo G., Giuntini, R., Pulmannová S.: Pre-BZ and degenerate BZ posets: Applications to fuzzy sets and unsharp quantum theories.Found. Phys. 30 (2000), 1765–1799 MR 1810201, 10.1023/A:1026462620062
Reference: [6] Chang C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [7] Chang C. C.: A new proof of the completeness of the Lukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80 Zbl 0093.01104, MR 0122718
Reference: [8] Chovanec F., Kôpka F.: D-lattices.Internat. J. Theor. Phys. 34 (1995), 1297–1302 Zbl 0840.03046, MR 1353674, 10.1007/BF00676241
Reference: [9] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundation of Many-Valued Reasoning.Kluwer Academic Publishers, Dordrecht 2000 MR 1786097
Reference: [10] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy on effect algebras with the Riesz decomposition property I, II.Kybernetika 41 (2005), 143–160, 161–176
Reference: [11] Chiara M. Dalla, Giuntini, R., Greechie R.: Reasoning in Quantum Theory.Kluwer Academic Publishers, Dordrecht 2004 MR 2069854
Reference: [12] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups.J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 Zbl 0958.06006, MR 1738040, 10.1017/S1446788700001993
Reference: [13] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR 1861369
Reference: [14] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logic.Found. Phys. 24 (1994), 1325–1346 MR 1304942, 10.1007/BF02283036
Reference: [15] Halmos P. R.: Measure Theory.Van Nostrand, Princeton, New Jersey 1962 Zbl 0283.28001, MR 0033869
Reference: [16] Kôpka F., Chovanec F.: D-posets.Math. Slovaca 44 (1994), 21–34 MR 1290269
Reference: [17] Mundici D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63 MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [18] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras.Adv. Appl. Math. 22 (1999), 227–248 Zbl 0926.06004, MR 1659410, 10.1006/aama.1998.0631
Reference: [19] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991 MR 1176314
Reference: [20] Pulmannová S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups.J. Math. Anal. Appl. (to appear) Zbl 1072.06014, MR 2154046
Reference: [21] Riečan B., Mundici D.: Probability on MV-algebras.In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909 Zbl 1017.28002, MR 1954631
Reference: [22] Riečan B., Neubrunn T.: Integral, Measure and Ordering.Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997 Zbl 0916.28001, MR 1489521
Reference: [23] Varadarajan V. S.: Geometry of Quantum Theory.Springer–Verlag, New York 1985 Zbl 0581.46061, MR 0805158
.

Files

Files Size Format View
Kybernetika_41-2005-3_7.pdf 1.679Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo