Previous |  Up |  Next

Article

Title: Transformations of copulas (English)
Author: Klement, Erich Peter
Author: Mesiar, Radko
Author: Pap, Endre
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 4
Year: 2005
Pages: [425]-434
Summary lang: English
.
Category: math
.
Summary: Transformations of copulas by means of increasing bijections on the unit interval and attractors of copulas are discussed. The invariance of copulas under such transformations as well as the relationship to maximum attractors and Archimax copulas is investigated. (English)
Keyword: copula
Keyword: transformation of copulas
Keyword: invariant copulas
Keyword: maximum attractor
Keyword: Archimax copula
MSC: 60E05
MSC: 62E15
MSC: 62E99
idZBL: Zbl 1243.62019
idMR: MR2180355
.
Date available: 2009-09-24T20:10:10Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135667
.
Reference: [1] Aczél J., Alsina C.: Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements.Methods Oper. Res. 48 (1984) 3–22 Zbl 0527.39002, MR 0736352
Reference: [2] Ali M. M., Mikhail N. N., Haq M. S.: A class of bivariate distributions including the bivariate logistic.J. Multivariate Anal. 8 (1978), 405–412 MR 0512610, 10.1016/0047-259X(78)90063-5
Reference: [3] Alsina C., Frank M. J., Schweizer B.: Associative Functions on Intervals: A Primer on Triangular Norms, in pres.
Reference: [4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators.New Trends and Applications. Physica–Verlag, Heidelberg 2002 Zbl 0983.00020, MR 1936383
Reference: [5] Capéraà P., Fougères A.-L., Genest C.: Bivariate distributions with given extreme value attractor.J. Multivariate Anal. 72 (2000), 30–49 Zbl 0978.62043, MR 1747422, 10.1006/jmva.1999.1845
Reference: [6] Cuculescu I., Theodorescu R.: Extreme value attractors for star unimodal copulas.C. R. Math. Acad. Sci. Paris 334 (2002) 689–692 Zbl 0996.60026, MR 1903371, 10.1016/S1631-073X(02)02322-1
Reference: [7] Galambos J.: The Asymptotic Theory of Extreme Order Statistics.Robert E. Krieger Publishing, Melbourne 1987 Zbl 0634.62044, MR 0936631
Reference: [8] Genest C., Rivest L.-P.: A characterization of Gumbel’s family of extreme value distributions.Statist. Probab. Lett. 8 (1989), 207–211 Zbl 0701.62060, MR 1024029, 10.1016/0167-7152(89)90123-5
Reference: [9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [10] Klement E. P., Mesiar, R., Pap E.: Archimax copulas and invariance under transformations.C. R. Math. Acad. Sci. Paris 340 (2005), 755–758 Zbl 1126.62040, MR 2141065, 10.1016/j.crma.2005.04.012
Reference: [11] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty, and Information.Prentice Hall, Englewood Cliffs, NJ 1988 Zbl 0675.94025, MR 0930102
Reference: [12] Mikusiński P., Taylor M. D.: A remark on associative copulas.Comment. Math. Univ. Carolin. 40 (1999), 789–793 MR 1756554
Reference: [13] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [14] Pickands J.: Multivariate extreme value distributions.Bull. Inst. Internat. Statist. 49 (1981), 859–878 (with a discussion, 894–902) Zbl 0518.62045, MR 0820979
Reference: [15] Rückschlossová T.: Aggregation Operators and Invariantness.Ph.D. Thesis, Slovak University of Technology, Bratislava 2003
Reference: [16] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [17] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Reference: [18] Tawn J. A.: Bivariate extreme value theory: models and estimation.Biometrika 75 (1988), 397–415 Zbl 0653.62045, MR 0967580, 10.1093/biomet/75.3.397
.

Files

Files Size Format View
Kybernetika_41-2005-4_1.pdf 1.217Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo