Previous |  Up |  Next

Article

Title: On reverses of some binary operators (English)
Author: Šabo, Michal
Author: Strežo, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 4
Year: 2005
Pages: [435]-450
Summary lang: English
.
Category: math
.
Summary: The notion of reverse of any binary operation on the unit interval is introduced. The properties of reverses of some binary operations are studied and some applications of reverses are indicated. (English)
Keyword: reverse of binary operations
Keyword: fuzzy preference structures
MSC: 03E72
MSC: 08A72
MSC: 39B05
idZBL: Zbl 1249.08010
idMR: MR2180356
.
Date available: 2009-09-24T20:10:18Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135668
.
Reference: [1] Baets B. De, Fodor J.: Twenty years of fuzzy preference structures (1978 – 1997).Belg. J. Oper. Res. Statist. Comput. Sci. 37 (1997), 61–81 Zbl 0926.91012, MR 1619319
Reference: [2] Baets B. De, Fodor J.: Generator triplets of additive preference structures.Academia Press, Gent 2003, pp. 15–25
Reference: [3] Baets B. De, Mayer H. De: The Frank family in fuzzy similarity measurement.In: Proc. Eusflat, Leicester 2001, pp. 15–23
Reference: [4] Fodor J., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994
Reference: [5] Fodor J., Jenei S.: On reversible triangular t-norms.Fuzzy Sets and Systems 104 (1999), 1, 43–51 MR 1685808
Reference: [6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$.Aequationes Math. 19 (1979), 194–226 Zbl 0444.39003, MR 0556722, 10.1007/BF02189866
Reference: [7] Jenei S.: Fibred triangular norms.Fuzzy Sets and Systems 103 (1999), 68–82 Zbl 0946.26017, MR 1674034
Reference: [8] Kimberling C.: On a class of associative function.Publ. Math. Debrecen 20 (1973), 21–39 MR 0333504
Reference: [9] Klement E. P., Mesiar, R., Pap E.: On some geometric tranformations of t-norms.Mathware & Soft Computing 5 (1998), 57–67 MR 1632763
Reference: [10] Klement E. P., Mesiar, R., Pap E.: Invariant copulas.Kybernetika 38 (2002), 275–285 MR 1944309
Reference: [11] Klement E. P., Mesiar, R., Pap E.: Measure-based aggregation operators.Fuzzy Sets and Systems 142 (2004), 3–14 Zbl 1046.28011, MR 2045339, 10.1016/j.fss.2003.10.028
Reference: [12] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [13] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators.In: Proc. Summmer School on Aggregation Operators and their Applications, Oviedo 2001, pp. 71–75
Reference: [14] Lazaro J., Rückschlossová, T., Calvo T.: Shift invariant binary aggregation operators.Fuzzy Sets and Systems 142 (2004), 51–62 Zbl 1081.68106, MR 2045342, 10.1016/j.fss.2003.10.031
Reference: [15] Mesiarová A.: Continuous triangular subnorms.Fuzzy Sets and Systems 142 (2004), 75–83 Zbl 1043.03018, MR 2045344
Reference: [16] Moyniham R.: On $\tau _{T}$ semigroups of probability distributions II.Aequationes Math. 17 (1978), 19–40
Reference: [17] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [18] Šabo M.: On t-reverse of t-norms.Tatra Mt. Math. Publ. 12 (1997), 35–40 Zbl 0954.03060, MR 1607131
Reference: [19] Šabo M.: Fuzzy preference structures and t-reversible t-norm.Busefal 76 (1998), 29–33
Reference: [20] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1963 Zbl 0546.60010, MR 0790314
Reference: [21] Walle B. Van de, Baets, B. De, Kerre E. E.: A comparative study of completeness conditions in fuzzy preference structures.In: Proc. IFSA’97, Prague, Vol. III, pp. 74–79
.

Files

Files Size Format View
Kybernetika_41-2005-4_2.pdf 1.545Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo