Previous |  Up |  Next

Article

Title: Multiplication, distributivity and fuzzy-integral. III (English)
Author: Sander, Wolfgang
Author: Siedekum, Jens
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 4
Year: 2005
Pages: [497]-518
Summary lang: English
.
Category: math
.
Summary: Based on the results of generalized additions, multiplications and differences proven in Part I and II of this paper a framework for a general integral is presented. Moreover it is shown that many results of the literature are contained as special cases in our results. (English)
Keyword: fuzzy measures
Keyword: distributivity law
Keyword: restricted domain
Keyword: pseudo- addition
Keyword: pseudo-multiplication
Keyword: Choquet integral
Keyword: Sugeno integral
MSC: 20M30
MSC: 28A12
MSC: 28A25
MSC: 28E10
idZBL: Zbl 1249.28030
idMR: MR2180359
.
Date available: 2009-09-24T20:10:41Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135671
.
Related article: http://dml.cz/handle/10338.dmlcz/135664
Related article: http://dml.cz/handle/10338.dmlcz/135670
.
Reference: [1] Aczél J.: Lectures on Functional Equations and Their Applications.Academic Press, New York – London 1966 MR 0208210
Reference: [2] Benvenuti P., Mesiar, R., Vivona D.: Monotone set-functions-based integrals.In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 1329–1379 Zbl 1099.28007, MR 1954643
Reference: [3] Benvenuti P., Vivona, D., Divari M.: The Cauchy equation on I-semigroups.Aequationes Math. 63 (2002), 220–230 MR 1904716, 10.1007/s00010-002-8020-x
Reference: [4] Bertoluzza C., Cariolaro D.: On the measure of a fuzzy set based on continuous t-conorms.Fuzzy Sets and Systems 88 (1997), 355–362 Zbl 0923.94049, MR 1456033, 10.1016/S0165-0114(96)00053-X
Reference: [5] deCampos L. M., Bolaños M. J.: Characterization and comparison of Sugeno and Choquet integral.Fuzzy Sets and Systems 52 (1992), 61–67 MR 1195202, 10.1016/0165-0114(92)90037-5
Reference: [6] Denneberg D.: Non-additive Measure and Integral.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0968.28009, MR 1320048
Reference: [7] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [8] Grabisch M., Murofushi, T., (eds.) M. Sugeno: Fuzzy Measures and Integrals.Theory and Applications. Physica–Verlag, Heidelberg 2000 Zbl 0935.00014, MR 1767776
Reference: [9] Grabisch M., Nguyen H. T., Walker E. A.: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference.Kluwer Academic Publishers, Dordrecht 1995 Zbl 0817.94036, MR 1472733
Reference: [10] Kruse R. L., Deeley J. J.: Joint continuity of monotonic functions.Amer. Math. Soc. 76 (1969), 74–76 10.2307/2316804
Reference: [11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic, Volume 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [12] Ling C. H.: Representations of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
Reference: [13] Mesiar R.: Choquet-like integrals.J. Math. Anal. Appl. 194 (1995), 477–488 MR 1345050, 10.1006/jmaa.1995.1312
Reference: [14] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary.Ann. of Math. 65 (1957), 117–143 MR 0084103, 10.2307/1969668
Reference: [15] Murofushi T., Sugeno M.: Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral.Fuzzy Sets and Systems 42 (1991), 57–71 Zbl 0733.28014, MR 1123577
Reference: [16] Pap E.: Null-Additive Set Functions.Kluwer Academic Publishers, Dordrecht 1995 Zbl 1003.28012, MR 1368630
Reference: [17] Sander W.: Associative aggregation operators.In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg – New York 2002, pp. 124–158 Zbl 1025.03054, MR 1936386
Reference: [18] Shilkret N.: Maxitive measures and integration.Indag. Math. 33 (1971), 109–116 MR 0288225, 10.1016/S1385-7258(71)80017-3
Reference: [19] Siedekum J.: Multiplikation und t-Conorm Integral.Ph.D. Thesis. Braunschweig 2002 Zbl 1196.28033
Reference: [20] Sugeno M., Murofushi T.: Pseudo-additive measures and integrals.J. Math. Anal. Appl. 122 (1987), 197–222 Zbl 0611.28010, MR 0874969, 10.1016/0022-247X(87)90354-4
Reference: [21] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York – London 1992 Zbl 0812.28010, MR 1212086
Reference: [22] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms $\perp $.J. Math. Anal. Appl. 101 (1984), 114–138 Zbl 0614.28019, MR 0746230, 10.1016/0022-247X(84)90061-1
.

Files

Files Size Format View
Kybernetika_41-2005-4_5.pdf 2.246Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo