Title:
|
Comparing the distributions of sums of independent random vectors (English) |
Author:
|
Gordienko, Evgueni |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
41 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
[519]-529 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2<\infty $, $E|\tilde{X}_1|^{k+2}<\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively. (English) |
Keyword:
|
sum of random vectors |
Keyword:
|
the total variation distance |
Keyword:
|
bound of closeness |
Keyword:
|
Zolotarev’s metric |
Keyword:
|
characteristic function |
MSC:
|
60F99 |
MSC:
|
60G50 |
idZBL:
|
Zbl 1249.60086 |
idMR:
|
MR2180360 |
. |
Date available:
|
2009-09-24T20:10:48Z |
Last updated:
|
2015-03-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135672 |
. |
Reference:
|
[1] Araujo A., Giné E.: The Central Limit Theorem for Real and Banach Valued Random Variables.Wiley, New York 1980 Zbl 0457.60001, MR 0576407 |
Reference:
|
[2] Asmussen S.: Applied Probability and Queues.Wiley, Chichester 1987 Zbl 1029.60001, MR 0889893 |
Reference:
|
[3] Bhattacharya R. N., Rao R. Ranga: Normal Approximation and Asymptotic Expansions.Wiley, New York 1976 MR 0436272 |
Reference:
|
[4] Dudley R. M.: Uniform Central Limit Theorems.Cambridge University Press, Cambridge 1999 Zbl 1139.60016, MR 1720712 |
Reference:
|
[5] Gordienko E. I.: Estimates of stability of geometric convolutions.Appl. Math. Lett. 12 (1999), 103–106 Zbl 0944.60035, MR 1750146, 10.1016/S0893-9659(99)00064-6 |
Reference:
|
[6] Gordienko E. I., Chávez J. Ruiz de: New estimates of continuity in $M|GI|1|\infty $ queues.Queueing Systems Theory Appl. 29 (1998), 175–188 MR 1654484 |
Reference:
|
[7] Grandell J.: Aspects of Risk Theory.Springer–Verlag, Heidelberg 1991 Zbl 0717.62100, MR 1084370 |
Reference:
|
[8] Kalashnikov V.: Geometric Sums: Bounds for Rare Events with Applications.Kluwer Academic Publishers, Dordrecht 1997 Zbl 0881.60043, MR 1471479 |
Reference:
|
[9] Kalashnikov V., Konstantinidis D.: The ruin probability.Fund. Appl. Math. 2 (1996), 1055–1100 (in Russian) MR 1785772 |
Reference:
|
[10] Prokhorov A. V., Ushakov N. G.: On the problem of reconstructing a summands distribution by the distribution of their sum.Theory Probab. Appl. 46 (2002), 420–430 Zbl 1032.60010, MR 1978662, 10.1137/S0040585X97979202 |
Reference:
|
[11] Senatov V. V.: Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem.Theory Probab. Appl. 25 (1980), 745–759 |
Reference:
|
[12] Senatov V. V.: Qualitative effects in estimates for the rate of convergence in the central limit theorem in multidimensional spaces.Proc. Steklov Inst. Math. 215 (1996), 4, 1–237 MR 1632100 |
Reference:
|
[13] Zhukov, Yu. V.: On the accuracy of normal approximation for the densities of sums of independent identically distributed random variables.Theory Probab. Appl. 44 (2000), 785–793 Zbl 0967.60022, MR 1811136 |
Reference:
|
[14] Zolotarev V.: Ideal metrics in the problems of probability theory.Austral. J. Statist. 21 (1979), 193–208 Zbl 0428.62012, MR 0561947, 10.1111/j.1467-842X.1979.tb01139.x |
. |