Previous |  Up |  Next

Article

Title: Comparing the distributions of sums of independent random vectors (English)
Author: Gordienko, Evgueni
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 4
Year: 2005
Pages: [519]-529
Summary lang: English
.
Category: math
.
Summary: Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2<\infty $, $E|\tilde{X}_1|^{k+2}<\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively. (English)
Keyword: sum of random vectors
Keyword: the total variation distance
Keyword: bound of closeness
Keyword: Zolotarev’s metric
Keyword: characteristic function
MSC: 60F99
MSC: 60G50
idZBL: Zbl 1249.60086
idMR: MR2180360
.
Date available: 2009-09-24T20:10:48Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135672
.
Reference: [1] Araujo A., Giné E.: The Central Limit Theorem for Real and Banach Valued Random Variables.Wiley, New York 1980 Zbl 0457.60001, MR 0576407
Reference: [2] Asmussen S.: Applied Probability and Queues.Wiley, Chichester 1987 Zbl 1029.60001, MR 0889893
Reference: [3] Bhattacharya R. N., Rao R. Ranga: Normal Approximation and Asymptotic Expansions.Wiley, New York 1976 MR 0436272
Reference: [4] Dudley R. M.: Uniform Central Limit Theorems.Cambridge University Press, Cambridge 1999 Zbl 1139.60016, MR 1720712
Reference: [5] Gordienko E. I.: Estimates of stability of geometric convolutions.Appl. Math. Lett. 12 (1999), 103–106 Zbl 0944.60035, MR 1750146, 10.1016/S0893-9659(99)00064-6
Reference: [6] Gordienko E. I., Chávez J. Ruiz de: New estimates of continuity in $M|GI|1|\infty $ queues.Queueing Systems Theory Appl. 29 (1998), 175–188 MR 1654484
Reference: [7] Grandell J.: Aspects of Risk Theory.Springer–Verlag, Heidelberg 1991 Zbl 0717.62100, MR 1084370
Reference: [8] Kalashnikov V.: Geometric Sums: Bounds for Rare Events with Applications.Kluwer Academic Publishers, Dordrecht 1997 Zbl 0881.60043, MR 1471479
Reference: [9] Kalashnikov V., Konstantinidis D.: The ruin probability.Fund. Appl. Math. 2 (1996), 1055–1100 (in Russian) MR 1785772
Reference: [10] Prokhorov A. V., Ushakov N. G.: On the problem of reconstructing a summands distribution by the distribution of their sum.Theory Probab. Appl. 46 (2002), 420–430 Zbl 1032.60010, MR 1978662, 10.1137/S0040585X97979202
Reference: [11] Senatov V. V.: Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem.Theory Probab. Appl. 25 (1980), 745–759
Reference: [12] Senatov V. V.: Qualitative effects in estimates for the rate of convergence in the central limit theorem in multidimensional spaces.Proc. Steklov Inst. Math. 215 (1996), 4, 1–237 MR 1632100
Reference: [13] Zhukov, Yu. V.: On the accuracy of normal approximation for the densities of sums of independent identically distributed random variables.Theory Probab. Appl. 44 (2000), 785–793 Zbl 0967.60022, MR 1811136
Reference: [14] Zolotarev V.: Ideal metrics in the problems of probability theory.Austral. J. Statist. 21 (1979), 193–208 Zbl 0428.62012, MR 0561947, 10.1111/j.1467-842X.1979.tb01139.x
.

Files

Files Size Format View
Kybernetika_41-2005-4_6.pdf 1.261Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo