Title:
|
Archimedean atomic lattice effect algebras in which all sharp elements are central (English) |
Author:
|
Riečanová, Zdenka |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
42 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
143-150 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it. (English) |
Keyword:
|
lattice effect algebra |
Keyword:
|
sharp and central element |
Keyword:
|
block |
Keyword:
|
state |
Keyword:
|
subdirect decomposition |
Keyword:
|
MacNeille completion |
MSC:
|
03G10 |
MSC:
|
03G12 |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
81P10 |
idZBL:
|
Zbl 1249.03121 |
idMR:
|
MR2241781 |
. |
Date available:
|
2009-09-24T20:14:48Z |
Last updated:
|
2015-03-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135705 |
. |
Reference:
|
[1] Chang C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 MR 1861369 |
Reference:
|
[3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1331–1352 MR 1304942, 10.1007/BF02283036 |
Reference:
|
[4] Greechie R. J.: Orthomodular lattices admitting no states.J. Combin. Theory Ser. A 10 (1971), 119–132 Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X |
Reference:
|
[5] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra.Order 12 (1995), 91–106 Zbl 0846.03031, MR 1336539, 10.1007/BF01108592 |
Reference:
|
[6] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras.BUSEFAL 80 (1999), 24–29 |
Reference:
|
[7] Kôpka F., Chovanec F.: $D$-posets.Math. Slovaca 44 (1994), 21–34 Zbl 0789.03048, MR 1290269 |
Reference:
|
[8] Riečanová Z.: MacNeille completions of $D$-posets and effect algebras.Internat. J. Theor. Phys. 39 (2000), 859–869 Zbl 0967.06008, MR 1792204, 10.1023/A:1003683014627 |
Reference:
|
[9] Riečanová Z.: Generalization of blocks for $D$-lattices and lattice ordered effect algebras.Internat. J. Theor. Phys. 39 (2000), 231–237 Zbl 0968.81003, MR 1762594, 10.1023/A:1003619806024 |
Reference:
|
[10] Riečanová Z.: Archimedean and block-finite lattice effect algebras.Demonstratio Math. 33 (2000), 443–452 MR 1791464 |
Reference:
|
[11] Riečanová Z.: Orthogonal sets in effect algebras.Demonstratio Math. 34 (2001), 3, 525–532 MR 1853730 |
Reference:
|
[12] Riečanová Z.: Proper effect algebras admitting no states.Internat. J. Theor. Phys. 40 40 (2001), 1683–1691 Zbl 0989.81003, MR 1858217, 10.1023/A:1011911512416 |
Reference:
|
[13] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras.Internat. J. Theor. Phys. 41 (2002), 1511–1524 MR 1932844, 10.1023/A:1020136531601 |
Reference:
|
[14] Riečanová Z.: Continuous effect algebra admitting order-continuous states.Fuzzy Sets and Systems 136 (2003), 41–54 MR 1978468, 10.1016/S0165-0114(02)00141-0 |
Reference:
|
[15] Riečanová Z.: Distributive atomic effect algebras.Demonstratio Math. 36 (2003), 247–259 MR 1984337 |
Reference:
|
[16] Riečanová Z.: Subdirect decompositions of lattice effect algebras.Internat. J. Theor. Phys. 42 (2003), 1425–1433 MR 2021221, 10.1023/A:1025775827938 |
Reference:
|
[17] Riečanová Z.: Modular atomic effect algebras and the existence of subadditive states.Kybernetika 40 (2004), 459–468 MR 2102364 |
Reference:
|
[18] Schmidt J.: Zur Kennzeichnung der Dedekind–MacNeilleschen Hulle einer geordneten Menge.Arch. Math. 17 (1956), 241–249 MR 0084484, 10.1007/BF01900297 |
. |