Previous |  Up |  Next

Article

Title: Weighted means and weighting functions (English)
Author: Mesiar, Radko
Author: Špirková, Jana
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 2
Year: 2006
Pages: 151-160
Summary lang: English
.
Category: math
.
Summary: We present some properties of mixture and generalized mixture operators, with special stress on their monotonicity. We introduce new sufficient conditions for weighting functions to ensure the monotonicity of the corresponding operators. However, mixture operators, generalized mixture operators neither quasi-arithmetic means weighted by a weighting function need not be non- decreasing operators, in general. (English)
Keyword: mixture operator
Keyword: generalized mixture operator
Keyword: monotonicity of the mixture operator
Keyword: quasi-arithmetic mean
Keyword: ordinal approach
MSC: 26E60
MSC: 90C29
MSC: 91B06
idZBL: Zbl 1249.91022
idMR: MR2241782
.
Date available: 2009-09-24T20:14:58Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135706
.
Reference: [1] Bajraktarevíc M.: Sur une équation fonctionnelle aux valeurs moyennes.Glas. Mat. Fyz. i Astr. 13 (1958), 243–248 Zbl 0084.34401, MR 0123111
Reference: [2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A review of aggregation operators.Servicio de Publicaciones de la U. A. H., Madrid 2001 MR 1821982
Reference: [3] Calvo T., Mayor, G., (eds.), Mesiar: Aggregation Operators.New Trends and Applications. Physica–Verlag, Heidelberg 2002 Zbl 0983.00020, MR 1936383
Reference: [4] Calvo T., Mesiar, R., Yager R. R.: Quantitative Weights and Aggregation, Fellow.IEEE Trans. Fuzzy Systems 2 (2004), 1, 62–69 MR 2073568, 10.1109/TFUZZ.2003.822679
Reference: [5] Edwards W., Newman J. R.: Multiattribute Evaluation.Quantitative Applications in the Social Sciences. Sage Publications, Beverly Hills, CA 1982
Reference: [6] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [7] Kolesárová A.: On the comparison of quasi-arithmtic means.Busefal 80 (1999), 33–34
Reference: [8] Kolesárová A.: Limit properties of quasi-arithmetic means.Fuzzy Sets and Systems 124 (2001), 1, 65–71 Zbl 0989.03060, MR 1859779, 10.1016/S0165-0114(00)00125-1
Reference: [9] Klir G. J., Folger T. A.: Fuzzy Sets.Uncertainty, and Information. Prentice Hall, Englewood Cliffs, New Jersey 1988 Zbl 0675.94025, MR 0930102
Reference: [10] Losonczi L.: Über eine neue Klasse von Mittelwerte.Acta Sci. Math. 9, Univ. Szeged 32 (1971), 71–78 MR 0311859
Reference: [11] Losonczi L.: Equality of two variable weighted means: reduction to differential equatios.Aequationnes Math. 58 (1999), 223–241 MR 1715394, 10.1007/s000100050110
Reference: [12] Ribeiro R. A., Pereira R. A. M.: Aggregation with generalized mixture operators using weighting functions.Fuzzy Sets and Systems 137 (2003), 43–58 Zbl 1041.91024, MR 1992697
Reference: [13] Pereira R. A. M., Pasi G.: On non-monotonic aggregation: Mixture operators.In: Proc. 4th Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE’99) and 2nd Internat. Conference on Soft and Intelligent Computing (SIC’99), Budapest 1999
Reference: [14] Ribeiro R. A., Pereira R. A. M.: Weights as functions of attribute satisfaction values.In: Proc. Workshop on Preference Modelling and Applications (EUROFUSE), Granada 2001
Reference: [15] Ribeiro R. A., Pereira R. A. M.: Generalized mixture operators using weighting functions: A comparative study with WA and OWA.European J. Oper. Res. 145 (2003), 329–342 Zbl 1011.90504, 10.1016/S0377-2217(02)00538-6
Reference: [16] Yager R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making.IEEE Trans. Systems Man Cybernet. 18 (1988), 183–190 MR 0931863, 10.1109/21.87068
.

Files

Files Size Format View
Kybernetika_42-2006-2_3.pdf 734.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo