Previous |  Up |  Next

Article

Title: Distributivity of strong implications over conjunctive and disjunctive uninorms (English)
Author: Ruiz-Aguilera, Daniel
Author: Torrens, Joan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 3
Year: 2006
Pages: 319-336
Summary lang: English
.
Category: math
.
Summary: This paper deals with implications defined from disjunctive uninorms $U$ by the expression $I(x,y)=U(N(x),y)$ where $N$ is a strong negation. The main goal is to solve the functional equation derived from the distributivity condition of these implications over conjunctive and disjunctive uninorms. Special cases are considered when the conjunctive and disjunctive uninorm are a $t$-norm or a $t$-conorm respectively. The obtained results show a lot of new solutions generalyzing those obtained in previous works when the implications are derived from $t$-conorms. (English)
Keyword: $t$-norm
Keyword: $t$-conorm
Keyword: uninorm
Keyword: implication operator
Keyword: S-implication
Keyword: R-implication
Keyword: distributivity
MSC: 03B52
MSC: 06F05
MSC: 94D05
idZBL: Zbl 1249.03030
idMR: MR2253392
.
Date available: 2009-09-24T20:16:16Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135717
.
Reference: [1] Balasubramaniam J., Rao C. J. M.: On the distributivity of implication operators over T and S norms.IEEE Trans. Fuzzy Systems 12 (2004), 194–198 10.1109/TFUZZ.2004.825075
Reference: [2] Combs W. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration.IEEE Trans. Fuzzy Systems 6 (1998), 1–11 10.1109/91.660804
Reference: [3] Combs W. E., Andrews J. E.: Author’s reply.IEEE Trans. Fuzzy Systems 7 (1999), 371 10.1109/TFUZZ.1999.771094
Reference: [4] Combs W. E., Andrews J. E.: Author’s reply.IEEE Trans. Fuzzy Systems 7 (1999), 478–479 10.1109/TFUZZ.1999.771094
Reference: [5] Baets B. De, Fodor J. C.: Residual operators of uninorms.Soft Computing 3 (1999), 89–100 10.1007/s005000050057
Reference: [6] Dick S., Kandel A.: Comments on “combinatorial rule explosion eliminated by a fuzzy rule configuration”.IEEE Trans. Fuzzy Systems 7 (1999), 475–477 10.1109/91.784213
Reference: [7] Fodor J. C., Yager R. R., Rybalov A.: Structure of uninorms.Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 4, 411–427 Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [8] González M., Ruiz, D., Torrens J.: Algebraic properties of fuzzy morphological operators based on uninorms.In: Artificial Intelligence Research and Development (I. Aguiló, L. Valverde, and M. Escrig, eds.), IOS Press 2003, pp. 27–38
Reference: [9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [10] Martín J., Mayor, G., Torrens J.: On locally internal monotonic operations.Fuzzy Sets and Systems 137 (2003), 1, 27–42 Zbl 1022.03038, MR 1992696, 10.1016/S0165-0114(02)00430-X
Reference: [11] Mas M., Mayor, G., Torrens J.: The distributivity condition for uninorms and $t$-operators.Fuzzy Sets and Systems 128 (2002), 209–225 Zbl 1005.03047, MR 1908427
Reference: [12] Mas M., Mayor, G., Torrens J.: Corrigendum to “The distributivity condition for uninorms and $t$-operators”.Fuzzy Sets and Systems 128 (2002), 209–225, Fuzzy Sets and Systems 153 (2005), 297–299 MR 1908427
Reference: [13] Mendel J. M., Liang Q.: Comments on “combinatorial rule explosion eliminated by a fuzzy rule configuration”.IEEE Trans. Fuzzy Systems 7 (1999), 369–371 10.1109/91.771093
Reference: [14] Ruiz D., Torrens J.: Distributive idempotent uninorms.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 11 (2003), 413–428 Zbl 1074.03026, MR 2007849, 10.1142/S0218488503002168
Reference: [15] Ruiz D., Torrens J.: Residual implications and co-implications from idempotent uninorms.Kybernetika 40 (2004), 21–38 MR 2068596
Reference: [16] Ruiz D., Torrens J.: Distributivity and conditional distributivity of a uninorm and a continuous $t$-conorm.IEEE Trans. Fuzzy Systems 14 (2006), 180–190 10.1109/TFUZZ.2005.864087
Reference: [17] Ruiz D., Torrens J.: Distributive residual implications from uninorms.In: Proc. EUSFLAT-2005, Barcelona 2005, pp. 369–374
Reference: [18] Trillas E., Alsina C.: On the law $[p\wedge q \rightarrow r ] \equiv [(p \rightarrow r) \vee (q \rightarrow r)]$ in fuzzy logic.IEEE Trans. Fuzzy Systems 10 (2002), 84–88
.

Files

Files Size Format View
Kybernetika_42-2006-3_6.pdf 790.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo