Previous |  Up |  Next

Article

Title: On the dominance relation between ordinal sums of conjunctors (English)
Author: Saminger, Susanne
Author: De Baets, Bernard
Author: De Meyer, Hans
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 3
Year: 2006
Pages: 337-350
Summary lang: English
.
Category: math
.
Summary: This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas. (English)
Keyword: conjunctor
Keyword: copula
Keyword: dominance
Keyword: ordinal sum
Keyword: quasi-copula
Keyword: t-norm
MSC: 26B99
MSC: 39B62
MSC: 60E05
idZBL: Zbl 1249.26025
idMR: MR2253393
.
Date available: 2009-09-24T20:16:26Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135718
.
Reference: [1] Aczél J.: Lectures on Functional Equations and their Applications.Academic Press, New York 1966 MR 0208210
Reference: [2] Birkhoff G.: Lattice Theory.American Mathematical Society, Providence, Rhode Island 1973 Zbl 0537.06001
Reference: [3] Bodenhofer U.: Representations and constructions of similarity-based fuzzy orderings.Fuzzy Sets and Systems 137 (2003), 1, 113–136 Zbl 1052.91032, MR 1992702, 10.1016/S0165-0114(02)00436-0
Reference: [4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings.(Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333
Reference: [5] Clifford A. H.: Naturally totally ordered commutative semigroups.Amer. J. Math. 76 (1954), 631–646 MR 0062118, 10.2307/2372706
Reference: [6] Baets B. De, Janssens, S., Meyer H. De: Meta-theorems on inequalities for scalar fuzzy set cardinalities.Fuzzy Sets and Systems 157 (2006), 1463–1476 Zbl 1106.03046, MR 2234554
Reference: [7] Baets B. De, Mesiar R.: $T$-partitions.Fuzzy Sets and Systems 97 (1998), 211–223 Zbl 0930.03070, MR 1645614, 10.1016/S0165-0114(96)00331-4
Reference: [8] Baets B. De, Mesiar R.: Ordinal sums of aggregation operators.In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 Zbl 1015.68194
Reference: [9] Díaz S., Montes, S., Baets B. De: Transitivity bounds in additive fuzzy preference structures.IEEE Trans. Fuzzy Systems, to appear
Reference: [10] Dubois D., Prade H.: New results about properties and semantics of fuzzy set-theoretic operators.In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 Zbl 0593.04004, MR 0587634
Reference: [11] Durante F., Sempi C.: Semicopulæ.Kybernetika 41 (2005), 3, 315–328 MR 2181421
Reference: [12] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809
Reference: [13] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas.Fuzzy Sets and Systems 148 (2004), 263–278 Zbl 1057.81011, MR 2100199
Reference: [14] Jenei S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms.Fuzzy Sets and Systems 126 (2002), 199–205 Zbl 0996.03508, MR 1884686
Reference: [15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [16] Klement E. P., Mesiar, R., Pap E.: Triangular norms as ordinal sums of semigroups in the sense of A.H. Clifford. Semigroup Forum 65 (2002), 71–82 Zbl 1007.20054, MR 1903555, 10.1007/s002330010127
Reference: [17] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
Reference: [18] Mayor G., Torrens J.: On a family of t-norms.Fuzzy Sets and Systems 41 (1991), 161–166 Zbl 0739.39006, MR 1111963, 10.1016/0165-0114(91)90219-G
Reference: [19] Mesiar R., Saminger S.: Domination of ordered weighted averaging operators over t-norms.Soft Computing 8 (2004), 562–570 Zbl 1066.68127, 10.1007/s00500-003-0315-x
Reference: [20] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [21] Saminger S.: On ordinal sums of triangular norms on bounded lattices.Fuzzy Sets and Systems 157 (2006), 1406–1416 Zbl 1099.06004, MR 2226983
Reference: [22] Saminger S.: Aggregation in Evaluation of Computer-Assisted Assessment.(Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl 1067.68143
Reference: [23] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 Zbl 1053.03514, MR 1962666, 10.1142/S0218488502001806
Reference: [24] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [25] Tardiff R. M.: Topologies for probabilistic metric spaces.Pacific J. Math. 65 (1976), 233–251 Zbl 0337.54004, MR 0423315, 10.2140/pjm.1976.65.233
.

Files

Files Size Format View
Kybernetika_42-2006-3_7.pdf 840.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo