Title:
|
On the dominance relation between ordinal sums of conjunctors (English) |
Author:
|
Saminger, Susanne |
Author:
|
De Baets, Bernard |
Author:
|
De Meyer, Hans |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
337-350 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas. (English) |
Keyword:
|
conjunctor |
Keyword:
|
copula |
Keyword:
|
dominance |
Keyword:
|
ordinal sum |
Keyword:
|
quasi-copula |
Keyword:
|
t-norm |
MSC:
|
26B99 |
MSC:
|
39B62 |
MSC:
|
60E05 |
idZBL:
|
Zbl 1249.26025 |
idMR:
|
MR2253393 |
. |
Date available:
|
2009-09-24T20:16:26Z |
Last updated:
|
2015-03-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135718 |
. |
Reference:
|
[1] Aczél J.: Lectures on Functional Equations and their Applications.Academic Press, New York 1966 MR 0208210 |
Reference:
|
[2] Birkhoff G.: Lattice Theory.American Mathematical Society, Providence, Rhode Island 1973 Zbl 0537.06001 |
Reference:
|
[3] Bodenhofer U.: Representations and constructions of similarity-based fuzzy orderings.Fuzzy Sets and Systems 137 (2003), 1, 113–136 Zbl 1052.91032, MR 1992702, 10.1016/S0165-0114(02)00436-0 |
Reference:
|
[4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings.(Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333 |
Reference:
|
[5] Clifford A. H.: Naturally totally ordered commutative semigroups.Amer. J. Math. 76 (1954), 631–646 MR 0062118, 10.2307/2372706 |
Reference:
|
[6] Baets B. De, Janssens, S., Meyer H. De: Meta-theorems on inequalities for scalar fuzzy set cardinalities.Fuzzy Sets and Systems 157 (2006), 1463–1476 Zbl 1106.03046, MR 2234554 |
Reference:
|
[7] Baets B. De, Mesiar R.: $T$-partitions.Fuzzy Sets and Systems 97 (1998), 211–223 Zbl 0930.03070, MR 1645614, 10.1016/S0165-0114(96)00331-4 |
Reference:
|
[8] Baets B. De, Mesiar R.: Ordinal sums of aggregation operators.In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 Zbl 1015.68194 |
Reference:
|
[9] Díaz S., Montes, S., Baets B. De: Transitivity bounds in additive fuzzy preference structures.IEEE Trans. Fuzzy Systems, to appear |
Reference:
|
[10] Dubois D., Prade H.: New results about properties and semantics of fuzzy set-theoretic operators.In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 Zbl 0593.04004, MR 0587634 |
Reference:
|
[11] Durante F., Sempi C.: Semicopulæ.Kybernetika 41 (2005), 3, 315–328 MR 2181421 |
Reference:
|
[12] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809 |
Reference:
|
[13] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas.Fuzzy Sets and Systems 148 (2004), 263–278 Zbl 1057.81011, MR 2100199 |
Reference:
|
[14] Jenei S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms.Fuzzy Sets and Systems 126 (2002), 199–205 Zbl 0996.03508, MR 1884686 |
Reference:
|
[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096 |
Reference:
|
[16] Klement E. P., Mesiar, R., Pap E.: Triangular norms as ordinal sums of semigroups in the sense of A.H. Clifford. Semigroup Forum 65 (2002), 71–82 Zbl 1007.20054, MR 1903555, 10.1007/s002330010127 |
Reference:
|
[17] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575 |
Reference:
|
[18] Mayor G., Torrens J.: On a family of t-norms.Fuzzy Sets and Systems 41 (1991), 161–166 Zbl 0739.39006, MR 1111963, 10.1016/0165-0114(91)90219-G |
Reference:
|
[19] Mesiar R., Saminger S.: Domination of ordered weighted averaging operators over t-norms.Soft Computing 8 (2004), 562–570 Zbl 1066.68127, 10.1007/s00500-003-0315-x |
Reference:
|
[20] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0 |
Reference:
|
[21] Saminger S.: On ordinal sums of triangular norms on bounded lattices.Fuzzy Sets and Systems 157 (2006), 1406–1416 Zbl 1099.06004, MR 2226983 |
Reference:
|
[22] Saminger S.: Aggregation in Evaluation of Computer-Assisted Assessment.(Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl 1067.68143 |
Reference:
|
[23] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 Zbl 1053.03514, MR 1962666, 10.1142/S0218488502001806 |
Reference:
|
[24] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314 |
Reference:
|
[25] Tardiff R. M.: Topologies for probabilistic metric spaces.Pacific J. Math. 65 (1976), 233–251 Zbl 0337.54004, MR 0423315, 10.2140/pjm.1976.65.233 |
. |