Previous |  Up |  Next

Article

Title: Nonlinear filtering in spatio–temporal doubly stochastic point processes driven by OU processes (English)
Author: Prokešová, Michaela
Author: Beneš, Viktor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 5
Year: 2006
Pages: 539-556
Summary lang: English
.
Category: math
.
Summary: Doubly stochastic point processes driven by non-Gaussian Ornstein–Uhlenbeck type processes are studied. The problem of nonlinear filtering is investigated. For temporal point processes the characteristic form for the differential generator of the driving process is used to obtain a stochastic differential equation for the conditional distribution. The main result in the spatio-temporal case leads to the filtering equation for the conditional mean. (English)
Keyword: Cox process
Keyword: filtering
Keyword: Ornstein–Uhlenbeck process
MSC: 60G55
MSC: 60K35
idZBL: Zbl 1249.60097
idMR: MR2283504
.
Date available: 2009-09-24T20:18:31Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135734
.
Reference: [1] Barndorff-Nielsen O., Shephard N.: Non-Gaussian Ornstein–Uhlenbeck based models and some of their uses in financial economics.J. Roy. Statist. Soc. B 63 (2001), 167–241 Zbl 0983.60028, MR 1841412, 10.1111/1467-9868.00282
Reference: [2] Beneš V., Prokešová M.: Nonlinear filtration in doubly stochastic point processes.In: Proc. 4th International Conference Aplimat 2005 (M. Kováčová, ed.), FME, Slovak Technical University, Bratislava 2005, pp. 415–420
Reference: [3] Brémaud P.: Point Processes and Queues: Martingale Dynamics.Springer–Verlag, Berlin 1981 Zbl 0478.60004, MR 0636252
Reference: [4] Cont R., Tankov P.: Financial Modelling with Jump Processes.Chapman and Hall/CRC, Boca Raton 2004 MR 2042661
Reference: [5] Daley D. J., Vere-Jones D.: An Introduction to the Theory of Point Processes.Springer–Verlag, New York 1988 Zbl 1159.60003, MR 0950166
Reference: [6] Daley D. J., Vere-Jones D.: An Introduction to the Theory of Point Processes, Vol.I: Elementary Theory and Methods. Second edition. Springer–Verlag, New York 2003 Zbl 1159.60003, MR 1950431
Reference: [7] Fishman P. M., Snyder D.: The statistical analysis of space-time point processes.IEEE Trans. Inform. Theory 22 (1976), 257–274 Zbl 0345.60033, MR 0418216, 10.1109/TIT.1976.1055558
Reference: [8] Gihman I., Dorogovcev A.: On stability of solutions of stochastic differential equations.Ukrain. Mat. Z. 6 (1965), 229–250 MR 0281278
Reference: [9] Jurek Z. J., Mason J. D.: Operator-limit Distributions in Probability Theory.Wiley, New York 1993 Zbl 0850.60003, MR 1243181
Reference: [10] Karr A. F.: Point Processes and Their Statistical Inference.Marcel Dekker, New York 1986 Zbl 0733.62088, MR 0851982
Reference: [11] Liptser R. S., Shiryayev A. N.: Statistics in Random Processes, Vol.II: Applications. Springer–Verlag, New York 2000 MR 0488267
Reference: [12] Sato K.: Lévy Processes and Infinitely Divisible Distributions.Cambridge University Press, Cambridge 1999 Zbl 0973.60001, MR 1739520
Reference: [13] Sato K.: Basic results on Lévy processes.In: Lévy Processes – Theory and Applications (O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Birkäuser, Boston 2001 Zbl 0974.60036, MR 1833689
Reference: [14] Snyder D. L.: Filtering and detection for doubly stochastic Poisson processes.IEEE Trans. Inform. Theory 18 (1972), 91–102 Zbl 0227.62055, MR 0408953, 10.1109/TIT.1972.1054756
Reference: [15] Snyder D., Miller M.: Random Point Processes in Time and Space.Springer–Verlag, New York 1991 Zbl 0744.60050
.

Files

Files Size Format View
Kybernetika_42-2006-5_2.pdf 870.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo