Previous |  Up |  Next

Article

Title: Shape factor extremes for prolate spheroids (English)
Author: Hlubinka, Daniel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 5
Year: 2006
Pages: 557-568
Summary lang: English
.
Category: math
.
Summary: Microscopic prolate spheroids in a given volume of an opaque material are considered. The extremes of the shape factor of the spheroids are studied. The profiles of the spheroids are observed on a random planar section and based on these observations we want to estimate the distribution of the extremal shape factor of the spheroids. We show that under a tail uniformity condition the Maximum domain of attraction is stable. We discuss the normalising constants (n.c.) for the extremes of the spheroid and profile shape factor. Comparing the tail behaviour of the distribution of the profile and spheroid shape factor we show the relation between the n.c. of the profile shape factor (which can be estimated) and the n.c. of the spheroid shape factor (cannot be estimated directly) which are needed for the prediction of the tail behaviour of the shape factor. The paper completes the study [hlubinka:06] for prolate spheroids. (English)
Keyword: stereology of extremes
Keyword: shape factor
Keyword: normalising constants
Keyword: tail uniformity
MSC: 60D05
MSC: 60G70
idZBL: Zbl 1249.60106
idMR: MR2283505
.
Date available: 2009-09-24T20:18:38Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135735
.
Reference: [1] Coles S.: An Introduction to Statistical Modeling of Extreme Values.Springer–Verlag, Berlin 2001 Zbl 0980.62043, MR 1932132
Reference: [2] Cruz-Orive L.-M.: Particle size-shape distributions; the general spheroid problem.J. Microsc. 107 (1976), 235–253 10.1111/j.1365-2818.1976.tb02446.x
Reference: [3] Drees H., Reiss R.-D.: Tail behavior in Wicksell’s corpuscle problem.In: Probability Theory and Applications (J. Galambos and J. Kátai, eds.), Kluwer, Dordrecht 1992, pp. 205–220 MR 1211909
Reference: [4] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events for Insurance and Finance.Springer–Verlag, Berlin 1997 Zbl 0873.62116, MR 1458613
Reference: [5] Haan L. de: On Regular Variation and Its Application to the Weak Convergence of Sample Extremes.(Mathematical Centre Tract 32.) Mathematisch Centrum, Amsterdam 1975 Zbl 0226.60039, MR 0286156
Reference: [6] Hall P.: On some simple estimates of an exponent of regular variation.J. Roy. Statist. Soc. Ser. B 44 (1982), 37–42 Zbl 0521.62024, MR 0655370
Reference: [7] Hlubinka D.: Stereology of extremes; shape factor of spheroids.Extremes 5 (2003), 5–24 Zbl 1051.60011, MR 2021590, 10.1023/A:1026234329084
Reference: [8] Hlubinka D.: Stereology of extremes; size of spheroids.Mathematica Bohemica 128 (2003), 419–438 Zbl 1053.60053, MR 2032479
Reference: [9] Hlubinka D.: Extremes of spheroid shape factor based on two dimensional profiles.Kybernetika 42 (2006), 77–94 MR 2208521
Reference: [10] Hlubinka D., Kotz S.: The generalized FGM distribution and its application to stereology of extremes.Far East J. Theoret. Statist. (to appear) Zbl 1223.62080, MR 2737716
Reference: [11] Kötzer S., Molchanov I.: On the domain of attraction for the lower tail in Wicksell’s corpuscle problem.In: Proc. S$^4$G (V. Beneš, R. Lechnerová, and I. Saxl, eds.), Prague 2006, pp. 91–96
Reference: [12] Takahashi R., Sibuya M.: The maximum size of the planar sections of random spheres and its application to metalurgy.Ann. Inst. Statist. Math. 48 (1996), 127–144 MR 1392521, 10.1007/BF00049294
Reference: [13] Takahashi R., Sibuya M.: Maximum size prediction in Wicksell’s corpuscle problem for the exponential tail data.Extremes 5 (2002), 55–70 Zbl 1037.62098, MR 1947788, 10.1023/A:1020982025786
.

Files

Files Size Format View
Kybernetika_42-2006-5_3.pdf 748.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo