Title:
|
Choosing the best $\phi$-divergence goodness-of-fit statistic in multinomial sampling with linear constraints (English) |
Author:
|
Martin, Nirian |
Author:
|
Pardo, Leandro |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
42 |
Issue:
|
6 |
Year:
|
2006 |
Pages:
|
711-722 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we present a simulation study to analyze the behavior of the $\phi $-divergence test statistics in the problem of goodness-of-fit for loglinear models with linear constraints and multinomial sampling. We pay special attention to the Rényi’s and $I_{r}$-divergence measures. (English) |
Keyword:
|
multinomial sampling |
Keyword:
|
restricted maximum likelihood estimator |
Keyword:
|
goodness-of-fit |
Keyword:
|
$I_r$-divergence measure |
Keyword:
|
Rényi’s divergence measure |
MSC:
|
62B10 |
MSC:
|
62F03 |
MSC:
|
62F30 |
MSC:
|
62G10 |
MSC:
|
62H15 |
MSC:
|
62H17 |
MSC:
|
65C60 |
idZBL:
|
Zbl 1245.62011 |
idMR:
|
MR2296510 |
. |
Date available:
|
2009-09-24T20:20:20Z |
Last updated:
|
2015-03-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135746 |
. |
Reference:
|
[1] Agresti A.: Categorical Data Analysis.Wiley, New York 2002 MR 1914507 |
Reference:
|
[2] Andersen E. B.: The Statistical Analysis of Categorical Data.Springer, New York 1990 Zbl 0871.62050 |
Reference:
|
[3] Ali S. M., Silvey S. D.: A general class of coefficient of divergence of one distribution from another.J. Roy. Statist. Soc. 28 (1966), 131–142 MR 0196777 |
Reference:
|
[4] Csiszár I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität on Markhoffschen Ketten.Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 84–108 |
Reference:
|
[5] Dale J. R.: Asymptotic normality of goodness-of-fit statistics for sparse product multinomials.J. Roy. Statist. Soc. Ser. B 41 (1986), 48–59 Zbl 0611.62017, MR 0848050 |
Reference:
|
[6] Haber M., Brown M. B.: Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints.J. Amer. Statist. Assoc. 81 (1986), 477–482 Zbl 0604.62058, MR 0845886 |
Reference:
|
[7] Kullback S.: Kullback information.In: Encyclopedia of Statistical Sciences (S. Kotz and N. L. Johnson, eds.), Wiley, New York 1985, Volume 4, pp. 421–425 MR 1044999 |
Reference:
|
[8] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905 |
Reference:
|
[9] Pardo L., Menéndez M. L.: Analysis of divergence in loglinear models when expected frequencies are subject to linear constraints.Metrika 64 (2006), 63–76 Zbl 1098.62092, MR 2242558, 10.1007/s00184-006-0034-2 |
Reference:
|
[10] Powers D. A., Xie Y.: Statistical Methods for Categorical Data Analysis.Academic Press, San Diego 2000 Zbl 0967.62101, MR 1735454 |
Reference:
|
[11] Rényi A.: On measures of entropy and information.Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability 1 (1961), pp. 547–561 |
Reference:
|
[12] Vajda I.: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht 1989 Zbl 0711.62002 |
. |