Previous |  Up |  Next

Article

Title: Rate of convergence for a class of RCA estimators (English)
Author: Vaněček, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 6
Year: 2006
Pages: 699-709
Summary lang: English
.
Category: math
.
Summary: This work deals with Random Coefficient Autoregressive models where the error process is a martingale difference sequence. A class of estimators of unknown parameter is employed. This class was originally proposed by Schick and it covers both least squares estimator and maximum likelihood estimator for instance. Asymptotic behavior of such estimators is explored, especially the rate of convergence to normal distribution is established. (English)
Keyword: RCA
Keyword: parameter estimation
Keyword: rate of convergence
MSC: 60F05
MSC: 60G10
MSC: 62F10
MSC: 62M09
MSC: 62M10
MSC: 91B84
idZBL: Zbl 1249.60034
idMR: MR2296509
.
Date available: 2009-09-24T20:20:12Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135745
.
Reference: [1] Basu A. K., Roy S. Sen: On rates of convergence in the central limit theorem for parameter estimation in general autoregressive model.Statistics 21 (1990), 461–470 MR 1062852, 10.1080/02331889008802256
Reference: [2] Basu A. K., Roy S. Sen: On rates of convergence in the central limit theorem for parameter estimation in random coefficient autoregressive models.J. Indian Statist. Assoc. 26 (1988), 19–25 MR 1002100
Reference: [3] Davidson J.: Stochastic Limit Theory.(Advanced Texts in Econometrics.) Oxford University Press, New York, Reprinted 2002 Zbl 0904.60002, MR 1430804
Reference: [5] Janečková H., Prášková Z.: CWLS and ML estimates in a heteroscedastic RCA(1) model.Statist. Decisions 22 (2004), 245–259 Zbl 1057.62071, MR 2125611, 10.1524/stnd.22.3.245.57064
Reference: [6] Kato Y.: Rates of convergence in central limit theorem for martingale differences.Bull. Math. Statist 18 (1979), 1–8 MR 0517156
Reference: [7] Michel R., Pfanzagl J.: The accuracy of the normal approximation for minimum contrast estimate.Z. Wahrsch. Verw. Gebiete 18 (1971), 73–84 MR 0288897, 10.1007/BF00538488
Reference: [8] Nicholls D. F., Quinn B. G.: Random Coefficient Autoregressive Models: An Introduction.(Lecture Notes in Statistics 11.) Springer, New York 1982 Zbl 0497.62081, MR 0671255, 10.1007/978-1-4684-6273-9
Reference: [9] Phillips P. C. B., Solo V.: Asymptotics for linear processes.Ann. Statist. 20 (1992), 971–1001 Zbl 0759.60021, MR 1165602, 10.1214/aos/1176348666
Reference: [10] Schick A.: $\sqrt{n}$-consistent estimation in a random coefficient autoregressive model.Austral. J. Statist. 38 (1996), 155–160 MR 1442543, 10.1111/j.1467-842X.1996.tb00671.x
Reference: [12] Vaněček P.: Estimators of generalized RCA models.In: Proc. WDS’04 Part I (2004), pp. 35–40
.

Files

Files Size Format View
Kybernetika_42-2006-6_5.pdf 778.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo