Previous |  Up |  Next

Article

Title: Properties of fuzzy relations powers (English)
Author: Drewniak, Józef
Author: Pȩkala, Barbara
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 2
Year: 2007
Pages: 133-142
Summary lang: English
.
Category: math
.
Summary: Properties of $\sup \nolimits $-$\ast $ compositions of fuzzy relations were first examined in Goguen [8] and next discussed by many authors. Power sequence of fuzzy relations was mainly considered in the case of matrices of fuzzy relation on a finite set. We consider $\sup \nolimits $-$\ast $ powers of fuzzy relations under diverse assumptions about $\ast $ operation. At first, we remind fundamental properties of $\sup \nolimits $-$\ast $ composition. Then, we introduce some manipulations on relation powers. Next, the closure and interior of fuzzy relations are examined. Finally, particular properties of fuzzy relations on a finite set are presented. (English)
Keyword: fuzzy relation
Keyword: binary operation
Keyword: relation composition
Keyword: $\sup \nolimits $-$\ast $ composition
Keyword: relation powers
Keyword: relation closure
Keyword: relation interior
MSC: 03E72
MSC: 15A33
MSC: 15A99
MSC: 16Y60
idZBL: Zbl 1135.03022
idMR: MR2343391
.
Date available: 2009-09-24T20:22:22Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135762
.
Reference: [1] Birkhoff G.: Lattice Theory.(Colloq. Publ. 25.) American Mathematical Society, Providence, RI 1967 Zbl 0537.06001, MR 0227053
Reference: [2] Cechlárová K.: Powers of matrices over distributive lattices – a review.Fuzzy Sets and Systems 138 (2003), 3, 627–641 Zbl 1075.05537, MR 1998683
Reference: [3] Drewniak J.: Classes of fuzzy relations.In: Application of Logical an Algebraic Aspects of Fuzzy Relations (E. P. Klement and L. I. Valverde eds.), Johannes Kepler Universität Linz, Linz 1990, pp. 36–38
Reference: [4] Drewniak J., Kula K.: Generalized compositions of fuzzy relations.Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 10 (2002), 149–163 Zbl 1053.03511, MR 1962675
Reference: [5] Fan Z. T.: A note on power sequence of a fuzzy matrix.Fuzzy Sets and Systems 102 (1999), 281–286 MR 1674967
Reference: [6] Fan Z. T.: On the convergence of a fuzzy matrix in the sense of triangular norms.Fuzzy Sets and Systems 109 (2000), 409–417 Zbl 0980.15013, MR 1746994
Reference: [7] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [8] Goguen J. A.: L-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174 Zbl 0145.24404, MR 0224391
Reference: [9] Kaufmann A.: Introduction to the Theory of Fuzzy Subsets.Academic Press, New York 1975 Zbl 0332.02063, MR 0485402
Reference: [10] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [11] Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic.Theory and Applications. Prentice Hall, New Jersey 1995 Zbl 0915.03001, MR 1329731
Reference: [12] Li J. C., Zhang W. X.: On convergence of the min-max compositions of fuzzy matrices.Southeast Asian Bull. Math. 24 (2000), 3, 389–393 Zbl 0982.15018, MR 1811398
Reference: [13] Li J. X.: An upper bound of indices of finite fuzzy relations.Fuzzy Sets and Systems 49 (1992), 317–321 MR 1185382
Reference: [14] Nguyen H. T., Walker E. A.: A First Course in Fuzzy Logic.Chapmann & Hall, London 2000 Zbl 1083.03031, MR 1700266
Reference: [15] Portilla M. I., Burillo, P., Eraso M. L.: Properties of the fuzzy composition based on aggregation operators.Fuzzy Sets and Systems 110 (2000), 2, 217–226 Zbl 0941.03060, MR 1747743
Reference: [16] Thomason M. G.: Convergence of powers of a fuzzy matrix.J. Math. Anal. Appl. 57 (1977), 476–480 Zbl 0345.15007, MR 0427342
Reference: [17] Szász G.: Introduction to Lattice Theory.Akad. Kiadó, Budapest 1963 Zbl 0126.03703, MR 0110652
Reference: [18] Tan Y. J.: On the transitive matrices over distributive lattices.Linear Algebra Appl. 400 (2005), 169–191 Zbl 1073.15015, MR 2131923
Reference: [19] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427
Reference: [20] Zadeh L. A.: Similarity relations and fuzzy orderings.Inform. Sci. 3 (1971), 177–200 Zbl 0218.02058, MR 0297650
.

Files

Files Size Format View
Kybernetika_43-2007-2_3.pdf 750.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo