Previous |  Up |  Next

Article

Title: Marginal problem, statistical estimation, and Möbius formula (English)
Author: Janžura, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 5
Year: 2007
Pages: 619-631
Summary lang: English
.
Category: math
.
Summary: A solution to the marginal problem is obtained in a form of parametric exponential (Gibbs–Markov) distribution, where the unknown parameters are obtained by an optimization procedure that agrees with the maximum likelihood (ML) estimate. With respect to a difficult performance of the method we propose also an alternative approach, providing the original basis of marginals can be appropriately extended. Then the (numerically feasible) solution can be obtained either by the maximum pseudo-likelihood (MPL) estimate, or directly by Möbius formula. (English)
Keyword: Gibbs distributions
Keyword: maximum entropy
Keyword: pseudo-likelihood
Keyword: Möbius formula
MSC: 60G60
MSC: 62F10
MSC: 62G07
MSC: 62H12
MSC: 93E12
MSC: 93E25
idZBL: Zbl 1138.93059
idMR: MR2376327
.
Date available: 2009-09-24T20:27:40Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135802
.
Reference: [1] Barndorff-Nielsen O. E.: Information and Exponential Families in Statistical Theory.Wiley, New York 1978 Zbl 0387.62011, MR 0489333
Reference: [2] Besag J.: Statistical analysis of non-lattice data.The Statistician 24 (1975), 179–195
Reference: [3] Csiszár I., Matúš F.: Generalized maximum likelihood estimates for exponential families.Probability Theory and Related Fields (to appear) Zbl 1133.62039, MR 2372970
Reference: [4] Dobrushin R. L.: Prescribing a system of random variables by conditional distributions.Theor. Probab. Appl. 15 (1970), 458–486 Zbl 0264.60037
Reference: [5] Gilks W. R., Richardson, S., (eds.) D. J. Spiegelhalter: Markov Chain Monte Carlo in Practice.Chapman and Hall, London 1996 Zbl 0832.00018, MR 1397966
Reference: [6] Janžura M.: Asymptotic results in parameter estimation for Gibbs random fields.Kybernetika 33 (1997), 2, 133–159 Zbl 0962.62092, MR 1454275
Reference: [7] Janžura M.: A parametric model for large discrete stochastic systems.In: Second European Conference on Highly Structured Stochastic Systems, Pavia 1999, pp. 148–150
Reference: [8] Janžura M., Boček P.: A method for knowledge integration.Kybernetika 34 (1988), 1, 41–55
Reference: [9] Jaynes E. T.: On the rationale of the maximum entropy methods.Proc. IEEE 70 (1982), 939–952
Reference: [10] Jiroušek R., Vejnarová J.: Construction of multidimensional model by operators of composition: Current state of art.Soft Computing 7 (2003), 328–335
Reference: [11] Lauritzen S. L.: Graphical Models.University Press, Oxford 1006 Zbl 1055.62126, MR 1419991
Reference: [12] Perez A.: $\varepsilon $-admissible simplifications of the dependence structure of random variables.Kybernetika 13 (1979), 439–449 MR 0472224
Reference: [13] Perez A., Studený M.: Comparison of two methods for approximation of probability distributions with prescribed marginals.Kybernetika 43 (2007), 5, 591–618 Zbl 1144.68379, MR 2376326
Reference: [14] Winkler G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods.Springer–Verlag, Berlin 1995 Zbl 0821.68125, MR 1316400
Reference: [15] Younes L.: Estimation and annealing for Gibbsian fields.Ann. Inst. H. Poincaré 24 (1988), 2, 269–294 Zbl 0651.62091, MR 0953120
.

Files

Files Size Format View
Kybernetika_43-2007-5_3.pdf 811.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo