Previous |  Up |  Next

Article

Title: Notes on the evolution of feature selection methodology (English)
Author: Somol, Petr
Author: Novovičová, Jana
Author: Pudil, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 5
Year: 2007
Pages: 713-730
Summary lang: English
.
Category: math
.
Summary: The paper gives an overview of feature selection techniques in statistical pattern recognition with particular emphasis on methods developed within the Institute of Information Theory and Automation research team throughout recent years. Besides discussing the advances in methodology since times of Perez’s pioneering work the paper attempts to put the methods into a taxonomical framework. The methods discussed include the latest variants of the optimal algorithms, enhanced sub-optimal techniques and the simultaneous semi- parametric probability density function modelling and feature space selection method. Some related issues are illustrated on real data by means of the Feature Selection Toolbox software. (English)
Keyword: feature selection
Keyword: branch & bound
Keyword: sequential search
Keyword: mixture model
MSC: 62G05
MSC: 62H30
MSC: 65C60
MSC: 68T10
idZBL: Zbl 1134.62041
idMR: MR2376333
.
Date available: 2009-09-24T20:28:30Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135808
.
Reference: [1] Das S.: Filters, wrappers and a boosting-based hybrid for feature selection.In: Proc. 18th Internat. Conference Machine Learning, 2001, pp. 74–81
Reference: [2] Dash M., Choi K., Scheuermann, P., Liu H.: Feature selection for clustering – a Filter solution.In: Proc. Second Internat. Conference Data Mining, 2002, pp. 15–122
Reference: [3] Devijver P. A., Kittler J.: Pattern Recognition: A Statistical Approach.Prentice-Hall, Englewood Cliffs, NJ 1982 Zbl 0542.68071, MR 0692767
Reference: [4] Ferri F. J., Pudil P., Hatef, M., Kittler J.: Comparative study of techniques for large-scale feature selection.In: Pattern Recognition in Practice IV (E. S. Gelsema and L. N. Kanal, eds.), Elsevier Science B.V., 1994, pp. 403–413
Reference: [5] Fukunaga K.: Introduction to Statistical Pattern Recognition.Academic Press, New York 1990 Zbl 0711.62052, MR 1075415
Reference: [6] Graham M. W., Miller D. J.: Unsupervised learning of parsimonious mixtures on large spaces with integrated feature and component selection.IEEE Trans. Signal Process. 54 (2006), 4, 1289–1303
Reference: [7] Hodr R., Nikl J., Řeháková B., Veselý, A., Zvárová J.: Possibilities of a prognostic assessment quoad vitam in low birth weight newborns.Acta Facult. Med. Univ. Brunesis 58 (1977), 345–358
Reference: [8] Chen X.: An improved branch and bound algorithm for feature selection.Pattern Recognition Lett. 24 (2003), 12, 1925–1933
Reference: [9] Jain A. K., Zongker D.: Feature selection: Evaluation, application and small sample performance.IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), 2, 153–158
Reference: [10] Jain A. K., Duin R. P. W., Mao J.: Statistical pattern eecognition: A review.IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 2, 4–37
Reference: [11] Kohavi R., John G. H.: Wrappers for feature subset selection.Artificial Intelligence 97 (1997), 1–2, 273–324 Zbl 0904.68143
Reference: [12] Kudo M., Sklansky J.: Comparison of algorithms that select features for pattern classifiers.Pattern Recognition 33 (2000), 1, 25–41
Reference: [13] Law M. H., Figueiredo M. A. T., Jain A. K.: Simultaneous feature selection and clustering using mixture models.IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 1154–1166
Reference: [14] Liu H., Yu L.: Toward integrating feature selection algorithms for classification and clustering.IEEE Trans. Knowledge Data Engrg. 17 (2005), 491–502
Reference: [15] Mayer H. A., Somol P., Huber, R., Pudil P.: Improving statistical measures of feature subsets by conventional and evolutionary approaches.In: Proc. 3rd IAPR Internat. Workshop on Statistical Techniques in Pattern Recognition, Alicante 2000, pp. 77–81 Zbl 0996.68593
Reference: [16] McKenzie P., Alder M.: Initializing the EM Algorithm for Use in Gaussian Mixture Modelling.University of Western Australia, 1994
Reference: [17] McLachlan G. J.: Discriminant Analysis and Statistical Pattern Recognition.Wiley, New York 1992 Zbl 1108.62317, MR 1190469
Reference: [18] McLachlan G. J., Peel D.: Finite Mixture Models.Wiley, New York 2000 Zbl 0963.62061, MR 1789474
Reference: [19] Murphy P. M., Aha D. W.: UCI Repository of Machine Learning Databases [ftp.ics.uci.edu]. University of California, Depart ment of Information and Computer Science, Irvine 1994
Reference: [20] Narendra P. M., Fukunaga K.: A branch and bound algorithm for feature subset selection.IEEE Trans. Computers 26 (1977), 917–922
Reference: [21] Novovičová J., Pudil, P., Kittler J.: Divergence based feature selection for multimodal class densities.IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996), 2, 218–223
Reference: [22] Novovičová J., Pudil P.: Feature selection and classification by modified model with latent structure.In: Dealing With Complexity: Neural Network Approach, Springer–Verlag, Berlin 1997, pp. 126–140
Reference: [23] Pudil P., Novovičová, J., Kittler J.: Floating search methods in feature selection.Pattern Recognition Lett. 15 (1994), 11, 1119–1125
Reference: [24] Pudil P., Novovičová, J., Kittler J.: Feature selection based on approximation of class densities by finite mixtures of special type.Pattern Recognition 28 (1995), 1389–1398
Reference: [25] Pudil P., Novovičová, J., Kittler J.: Simultaneous learning of decision rules and important attributes for classification problems in image analysis.Image Vision Computing 12 (1994), 193–198
Reference: [26] Sardo L., Kittler J.: Model complexity validation for PDF estimation using Gaussian mixtures.In: Proc. 14th Internat. Conference on Pattern Recognition, Vol. 2, 1998, pp. 195–197
Reference: [27] Sebban M., Nock R.: A Hybrid filter/wrapper approach of feature selection using information theory.Pattern Recognition 35 (2002), 835–846 Zbl 0997.68115
Reference: [28] Siedlecki W., Sklansky J.: On automatic feature selection.Internat. J. Pattern Recognition Artif. Intell. 2 (1988), 2, 197–220
Reference: [29] Somol P., Pudil P., Novovičová, J., Paclík P.: Adaptive floating search methods in feature selection.Pattern Recognition Lett. 20 (1999), 11 – 13, 1157–1163
Reference: [30] Somol P., Pudil P.: Oscillating search algorithms for feature selection.In: Proc. 15th IAPR Internat. Conference on Pattern Recognition, 2000, pp. 406–409
Reference: [31] Somol P., Pudil P.: Feature Selection Toolbox.Pattern Recognition 35 (2002), 12, 2749–2759 Zbl 1029.68606
Reference: [32] Somol P., Pudil. P., Kittler J.: Fast branch & bound algorithms for optimal feature selection.IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 7, 900–912
Reference: [33] Somol P., Pudil, P., Grim J.: On prediction mechanisms in fast branch & bound algorithms.In: Lecture Notes in Computer Science 3138, Springer–Verlag, Berlin 2004, pp. 716–724 Zbl 1104.68694
Reference: [34] Somol P., Novovičová, J., Pudil P.: Flexible-hybrid sequential floating search in statistical feature selection.In: Lecture Notes in Computer Science 4109, Springer–Verlag, Berlin 2006, pp. 632–639
Reference: [35] Theodoridis S., Koutroumbas K.: Pattern Recognition.Second edition. Academic Press, New York 2003 Zbl 1093.68103
Reference: [36] Wang Z., Yang, J., Li G.: An improved branch & bound algorithm in feature selection.In: Lecture Notes in Computer Science 2639, Springer, Berlin 2003, pp. 549–556 Zbl 1026.68591
Reference: [37] Webb A.: Statistical Pattern Recognition.Second edition. Wiley, New York 2002 Zbl 1237.68006, MR 2191640
Reference: [38] Yu B., Yuan B.: A more efficient branch and bound algorithm for feature selection.Pattern Recognition 26 (1993), 883–889
Reference: [39] Yu L., Liu H.: Feature selection for high-dimensional data: A fast correlation-based filter solution.In: Proc. 20th Internat. Conf. Machine Learning, 2003, pp. 856–863
Reference: [40] Benda J. Zvárová a J.: Systém programů TIBIS.Ústav hematologie a krevní transfuze, Praha 1975 (in Czech)
Reference: [41] Zvárová J., Perez A., Nikl, J., Jiroušek R.: Data reduction in computer-aided medical decision-making.In: MEDINFO 83 (J. H. van Bemmel, M. J. Ball, and O. Wigertz, eds.), North Holland, Amsterdam 1983, pp. 450–453
Reference: [42] Zvárová J., Studený M.: Information theoretical approach to constitution and reduction of medical data.Internat. J. Medical Informatics 45 (1997), 1 – 2, 65–74
.

Files

Files Size Format View
Kybernetika_43-2007-5_9.pdf 1.219Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo