[1] Almgren F., Taylor J. E.:
Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differential Geom. 42 (1995), 1–22
MR 1350693 |
Zbl 0867.58020
[2] Angenent S., Gurtin M. E.:
Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989), 323–391
DOI 10.1007/BF01041068 |
MR 1013461
[4] Giga Y.: Anisotropic curvature effects in interface dynamics. Sūgaku 52 (2000), 113–127; English transl., Sūgaku Expositions 16 (2003), 135–152
[5] Gurtin M. E.:
Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford 1993
MR 1402243 |
Zbl 0787.73004
[7] Roberts S.:
A line element algorithm for curve flow problems in the plane. CMA Research Report 58 (1989); J. Austral. Math. Soc. Ser. B 35 (1993), 244–261
MR 1244207
[8] Taylor J. E.:
Constructions and conjectures in crystalline nondifferential geometry. In: Proc. Conference on Differential Geometry, Rio de Janeiro, Pitman Monographs Surveys Pure Appl. Math. 52 (1991), 321–336, Pitman London
MR 1173051 |
Zbl 0725.53011
[9] Taylor J. E.:
Motion of curves by crystalline curvature, including triple junctions and boundary points. Diff. Geom.: partial diff. eqs. on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54 (1993), Part I, 417–438, AMS, Providence
MR 1216599
[12] Yazaki S.: On an anisotropic area-preserving crystalline motion and motion of nonadmissible polygons by crystalline curvature. Sūrikaisekikenkyūsho Kōkyūroku 1356 (2004), 44–58