Previous |  Up |  Next

Article

Keywords:
tangential velocity; intrinsic heat equation; crystalline algorithm; admissible polygonal curve
Summary:
In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.
References:
[1] Angenent S., Gurtin M. E.: Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989), 323–391 DOI 10.1007/BF01041068 | MR 1013461
[2] Deckelnick K.: Weak solutions of the curve shortening flow. Calc. Var. Partial Differential Equations 5 (1997), 489–510 DOI 10.1007/s005260050076 | MR 1473305 | Zbl 0990.35076
[3] .Dziuk, G: Convergence of a semi discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4 (1994), 589–606 DOI 10.1142/S0218202594000339 | MR 1291140 | Zbl 0811.65112
[4] Giga Y.: Anisotropic curvature effects in interface dynamics. Sūgaku 52 (2000), 113–127; English transl., Sugaku Expositions 16 (2003), 135–152 MR 2019167
[5] Giga M.-H., Giga Y.: Crystalline and level set flow – convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane. GAKUTO Internat. Ser. Math. Sci. Appl. 13 (2000), 64–79 MR 1793023 | Zbl 0957.35122
[6] Gurtin M. E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford 1993 MR 1402243 | Zbl 0787.73004
[7] Hirota C., Ishiwata, T., Yazaki S.: Numerical study and examples on singularities of solutions to anisotropic crystalline curvature flows of nonconvex polygonal curves. In: Advanced Studies in Pure Mathematics (ASPM); Proc. MSJ-IRI 2005 “Asymptotic Analysis and Singularity”, Sendai 2005 (to appear) MR 2387254 | Zbl 1143.35308
[8] Hontani H., Giga M.-H., Giga, Y., Deguchi K.: Expanding selfsimilar solutions of a crystalline flow with applications to contour figure analysis. Discrete Appl. Math. 147 (2005), 265–285 DOI 10.1016/j.dam.2004.09.015 | MR 2127078 | Zbl 1117.65036
[9] Ishiwata T., Ushijima T. K., Yagisita, H., Yazaki S.: Two examples of nonconvex self-similar solution curves for a crystalline curvature flow. Proc. Japan Academy, Ser. A 80 (2004), 8, 151–154 MR 2099341 | Zbl 1077.53054
[10] Kimura M.: Accurate numerical scheme for the flow by curvature. Appl. Math. Letters 7 (1994), 69–73 DOI 10.1016/0893-9659(94)90056-6 | MR 1349897 | Zbl 0792.65100
[11] Mikula K., Ševčovič D.: Solution of nonlinearly curvature driven evolution of plane curves. Appl. Numer. Math. 31 (1999), 191–207 DOI 10.1016/S0168-9274(98)00130-5 | MR 1708959 | Zbl 0938.65145
[12] Mikula K., Ševčovič D.: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001), 1473–1501 DOI 10.1137/S0036139999359288 | MR 1824511 | Zbl 0980.35078
[13] Taylor J. E.: Constructions and conjectures in crystalline nondifferential geometry. In: Proc. Conference on Differential Geometry, Rio de Janeiro, Pitman Monographs Surveys Pure Appl. Math. 52 (1991), pp. 321–336, Pitman, London 1991 MR 1173051 | Zbl 0725.53011
[14] Taylor J. E.: Motion of curves by crystalline curvature, including triple junctions and boundary points. Diff. Geom.: Partial Diff. Eqs. on Manifolds (Los Angeles 1990), Proc. Sympos. Pure Math., 54 (1993), Part I, pp, 417–438, AMS, Providence MR 1216599
[15] Taylor J. E., Cahn, J., Handwerker C.: Geometric models of crystal growth. Acta Metall. 40 (1992), 1443–1474 DOI 10.1016/0956-7151(92)90090-2
[16] Ushijima T. K., Yagisita H.: Approximation of the Gauss curvature flow by a three-dimensional crystalline motion. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005; Kuju Training Center, Oita, Japan, September 15–18, 2005, COE Lecture Note 3, Faculty of Mathematics, Kyushu University (M. Beneš, M. Kimura, and T. Nakaki, eds.), 2006, pp. 139–145 MR 2279054 | Zbl 1145.53051
[17] Ushijima T. K., Yagisita H.: Convergence of a three-dimensional crystalline motion to Gauss curvature flow. Japan J. Indust. Appl. Math. 22 (2005), 443–459 DOI 10.1007/BF03167494 | MR 2179771 | Zbl 1089.53046
[18] Ushijima T. K., Yazaki S.: Convergence of a crystalline approximation for an area-preserving motion. Journal of Comput. and Appl. Math. 166 (2004), 427–452 DOI 10.1016/j.cam.2003.08.041 | MR 2041191 | Zbl 1052.65082
[19] Yazaki S.: Motion of nonadmissible convex polygons by crystalline curvature. Publ. Res. Inst. Math. Sci. 43 (2007), 155–170 DOI 10.2977/prims/1199403812 | MR 2317117 | Zbl 1132.53036
Partner of
EuDML logo