Title:
|
On the tangential velocity arising in a crystalline approximation of evolving plane curves (English) |
Author:
|
Yazaki, Shigetoshi |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
43 |
Issue:
|
6 |
Year:
|
2007 |
Pages:
|
913-918 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation. (English) |
Keyword:
|
tangential velocity |
Keyword:
|
intrinsic heat equation |
Keyword:
|
crystalline algorithm |
Keyword:
|
admissible polygonal curve |
MSC:
|
34A26 |
MSC:
|
34A34 |
MSC:
|
35K65 |
MSC:
|
53A04 |
MSC:
|
53C44 |
MSC:
|
53C80 |
MSC:
|
65L20 |
MSC:
|
65M12 |
MSC:
|
65N12 |
idZBL:
|
Zbl 1139.53033 |
idMR:
|
MR2388404 |
. |
Date available:
|
2009-09-24T20:31:13Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135826 |
. |
Reference:
|
[1] Angenent S., Gurtin M. E.: Multiphase thermomechanics with interfacial structure, 2.Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989), 323–391 MR 1013461, 10.1007/BF01041068 |
Reference:
|
[2] Deckelnick K.: Weak solutions of the curve shortening flow.Calc. Var. Partial Differential Equations 5 (1997), 489–510 Zbl 0990.35076, MR 1473305, 10.1007/s005260050076 |
Reference:
|
[3] .Dziuk, G: Convergence of a semi discrete scheme for the curve shortening flow.Math. Models Methods Appl. Sci. 4 (1994), 589–606 Zbl 0811.65112, MR 1291140, 10.1142/S0218202594000339 |
Reference:
|
[4] Giga Y.: Anisotropic curvature effects in interface dynamics.Sūgaku 52 (2000), 113–127; English transl., Sugaku Expositions 16 (2003), 135–152 MR 2019167 |
Reference:
|
[5] Giga M.-H., Giga Y.: Crystalline and level set flow – convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane.GAKUTO Internat. Ser. Math. Sci. Appl. 13 (2000), 64–79 Zbl 0957.35122, MR 1793023 |
Reference:
|
[6] Gurtin M. E.: Thermomechanics of Evolving Phase Boundaries in the Plane.Clarendon Press, Oxford 1993 Zbl 0787.73004, MR 1402243 |
Reference:
|
[7] Hirota C., Ishiwata, T., Yazaki S.: Numerical study and examples on singularities of solutions to anisotropic crystalline curvature flows of nonconvex polygonal curves.In: Advanced Studies in Pure Mathematics (ASPM); Proc. MSJ-IRI 2005 “Asymptotic Analysis and Singularity”, Sendai 2005 (to appear) Zbl 1143.35308, MR 2387254 |
Reference:
|
[8] Hontani H., Giga M.-H., Giga, Y., Deguchi K.: Expanding selfsimilar solutions of a crystalline flow with applications to contour figure analysis.Discrete Appl. Math. 147 (2005), 265–285 Zbl 1117.65036, MR 2127078, 10.1016/j.dam.2004.09.015 |
Reference:
|
[9] Ishiwata T., Ushijima T. K., Yagisita, H., Yazaki S.: Two examples of nonconvex self-similar solution curves for a crystalline curvature flow.Proc. Japan Academy, Ser. A 80 (2004), 8, 151–154 Zbl 1077.53054, MR 2099341 |
Reference:
|
[10] Kimura M.: Accurate numerical scheme for the flow by curvature.Appl. Math. Letters 7 (1994), 69–73 Zbl 0792.65100, MR 1349897, 10.1016/0893-9659(94)90056-6 |
Reference:
|
[11] Mikula K., Ševčovič D.: Solution of nonlinearly curvature driven evolution of plane curves.Appl. Numer. Math. 31 (1999), 191–207 Zbl 0938.65145, MR 1708959, 10.1016/S0168-9274(98)00130-5 |
Reference:
|
[12] Mikula K., Ševčovič D.: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy.SIAM J. Appl. Math. 61 (2001), 1473–1501 Zbl 0980.35078, MR 1824511, 10.1137/S0036139999359288 |
Reference:
|
[13] Taylor J. E.: Constructions and conjectures in crystalline nondifferential geometry.In: Proc. Conference on Differential Geometry, Rio de Janeiro, Pitman Monographs Surveys Pure Appl. Math. 52 (1991), pp. 321–336, Pitman, London 1991 Zbl 0725.53011, MR 1173051 |
Reference:
|
[14] Taylor J. E.: Motion of curves by crystalline curvature, including triple junctions and boundary points.Diff. Geom.: Partial Diff. Eqs. on Manifolds (Los Angeles 1990), Proc. Sympos. Pure Math., 54 (1993), Part I, pp, 417–438, AMS, Providence MR 1216599 |
Reference:
|
[15] Taylor J. E., Cahn, J., Handwerker C.: Geometric models of crystal growth.Acta Metall. 40 (1992), 1443–1474 10.1016/0956-7151(92)90090-2 |
Reference:
|
[16] Ushijima T. K., Yagisita H.: Approximation of the Gauss curvature flow by a three-dimensional crystalline motion.In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005; Kuju Training Center, Oita, Japan, September 15–18, 2005, COE Lecture Note 3, Faculty of Mathematics, Kyushu University (M. Beneš, M. Kimura, and T. Nakaki, eds.), 2006, pp. 139–145 Zbl 1145.53051, MR 2279054 |
Reference:
|
[17] Ushijima T. K., Yagisita H.: Convergence of a three-dimensional crystalline motion to Gauss curvature flow.Japan J. Indust. Appl. Math. 22 (2005), 443–459 Zbl 1089.53046, MR 2179771, 10.1007/BF03167494 |
Reference:
|
[18] Ushijima T. K., Yazaki S.: Convergence of a crystalline approximation for an area-preserving motion.Journal of Comput. and Appl. Math. 166 (2004), 427–452 Zbl 1052.65082, MR 2041191, 10.1016/j.cam.2003.08.041 |
Reference:
|
[19] Yazaki S.: Motion of nonadmissible convex polygons by crystalline curvature.Publ. Res. Inst. Math. Sci. 43 (2007), 155–170 Zbl 1132.53036, MR 2317117, 10.2977/prims/1199403812 |
. |