Previous |  Up |  Next

Article

Title: Nonlinear state prediction by separation approach for continuous-discrete stochastic systems (English)
Author: Švácha, Jaroslav
Author: Šimandl, Miroslav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 1
Year: 2008
Pages: 61-74
Summary lang: English
.
Category: math
.
Summary: The paper deals with a filter design for nonlinear continuous stochastic systems with discrete-time measurements. The general recursive solution is given by the Fokker–Planck equation (FPE) and by the Bayesian rule. The stress is laid on the computation of the predictive conditional probability density function from the FPE. The solution of the FPE and its integration into the estimation algorithm is the cornerstone for the whole recursive computation. A new usable numerical scheme for the FPE is designed. In the scheme, the separation technique based on the upwind volume method and the finite difference method for hyperbolic and parabolic part of the FPE is used. It is supposed that separation of the FPE and choice of a suitable numerical method for each part can achieve better estimation quality comparing to application of a single numerical method to the unseparated FPE. The approach is illustrated in some numerical examples. (English)
Keyword: stochastic systems
Keyword: state estimation
Keyword: nonlinear filters
Keyword: Fokker –Planck equation
Keyword: numerical solutions
Keyword: finite volume method
Keyword: finite difference method
MSC: 35B37
MSC: 60H10
MSC: 60H30
MSC: 65C30
MSC: 93E03
MSC: 93E10
MSC: 93E11
idZBL: Zbl 1145.93047
idMR: MR2405056
.
Date available: 2009-09-24T20:32:18Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135834
.
Reference: [1] Daum F. E.: New exact nonlinear filters.In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988, pp. 199–226
Reference: [2] Higham D. J., Kloeden P. E.: Maple and Matlab for Stochastic Differential Equations in Finance.Technical Report. University of Strathclyde 2001
Reference: [3] Chang J. S., Cooper G.: A practical difference scheme for Fokker–Planck equations.J. Comput. Phys. 6 (1970), 1–16 Zbl 0221.65153
Reference: [4] Moral P. del, Jacod J.: Interacting particle filtering with discrete observations.In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas, and N. Gordon, eds.), Springer-Verlag, New York 2001, pp. 43–75 MR 1847786
Reference: [5] Jazwinski A. H.: Stochastic Processes and Filtering Theory.Academic Press, New York 1970 Zbl 0203.50101
Reference: [6] Kalman R. E., Bucy R. S.: New results in linear filtering and prediction theory.J. Basic Engrg. 83 (1961), 95–108 MR 0234760
Reference: [7] Kouritzin M. A.: On exact filters for continuous signals with discrete observations.IEEE Trans. Automat. Control 43 (1998), 709–715 Zbl 0908.93064, MR 1618075
Reference: [8] Kushner H. J., Budhijara A. S.: A nonlinear filtering algorithm based on an approximation of the conditional distribution.IEEE Trans. Automat. Control 45 (2000), 580–585 MR 1762882
Reference: [9] LeVeque R. J.: Finite Volume Methods for Hyperbolic Problems.Cambridge University Press, New York 2002 Zbl 1010.65040, MR 1925043
Reference: [10] Lototsky S. V., Rozovskii B. L.: Recursive nonlinear filter for a continuous-discrete time model: Separation of parameters and observations.IEEE Trans. Automat. Control 43 (1998), 1154–1158 Zbl 0957.93085, MR 1636479
Reference: [11] Mirkovic D.: $N$-dimensional Finite Element Package.Technical Report. Department of Mathematics, Iowa State University 1996
Reference: [12] Park B. T., Petrosian V.: Fokker–Planck equations of stochastic acceleration: A study of numerical methods.Astrophys. J., Suppl. Ser. 103 (1996), 255–267
Reference: [13] Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T.: Numerical Recipes.Cambridge University Press, New York 1986 Zbl 1132.65001, MR 0833288
Reference: [14] Risken H.: The Fokker–Planck Equation.Springer–Verlag, Berlin 1984 Zbl 0866.60071, MR 0749386
Reference: [15] Schmidt G. C.: Designing nonlinear filters based on Daum’s theory.J. Guidance, Control and Dynamics 16 (1993), 371–376 Zbl 0775.93283
Reference: [16] Sorenson H. W., Alspach D. L.: Recursive Bayesian estimation using Gaussian sums.Automatica 7 (1971), 465–479 Zbl 0219.93020, MR 0321581
Reference: [17] Spencer B. F., Bergman L. A.: On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems.Nonlinear Dynamics 4 (1993), 357–372
Reference: [18] Spencer B. F., Wojtkiewicz S. F., Bergman L. A.: Some experiments with massively parallel computation for Monte Carlo simulation of stochastic dynamical systems.In: Proc. Second Internat. Conference on Computational Stochastic Mechanics, Athens 1994
Reference: [19] Šimandl M., Švácha J.: Nonlinear filters for continuous-time processes.In: Proc. 5th Internat. Conference on Process Control, Kouty nad Desnou 2002
Reference: [20] Šimandl M., Královec J.: Filtering, prediction and smoothing with Gaussian sum Rrpresentation.In: Proc. Symposium on System Identification. Santa Barbara 2000
Reference: [21] Šimandl M., Královec, J., Söderström T.: Anticipative grid design in point-mass approach to nonlinear state estimation.IEEE Trans. Automat. Control 47 (2002), 699–702 MR 1893533
Reference: [22] Šimandl M., Královec, J., Söderström T.: Advanced point–mass method for nonlinear state estimation.Automatica 42 (2006), 1133–1145 Zbl 1118.93052
Reference: [23] Šimandl M., Švácha J.: Separation approach for numerical solution of the Fokker–Planck equation in estimation problem.In: Preprints of 16th IFAC World Congress. Prague 2005
Reference: [24] Zhang D. S., Wei G. W., Kouri D. J., Hoffman D. K.: Numerical method for the nonlinear Fokker–Planck equation.Amer. Physical Society 56 (1997), 1197–1206
Reference: [25] Zorzano M. P., Mais, H., Vazquez L.: Numerical solution for Fokker–Planck equations in accelerators.Phys. D: Nonlinear Phenomena 113 (1998), 379–381 Zbl 0962.82055
.

Files

Files Size Format View
Kybernetika_44-2008-1_6.pdf 1.032Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo