Previous |  Up |  Next

Article

Title: On entropies for random partitions of the unit segment (English)
Author: Bieniek, Milena
Author: Szynal, Dominik
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 1
Year: 2008
Pages: 75-94
Summary lang: English
.
Category: math
.
Summary: We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions. (English)
Keyword: genetic entropy
Keyword: α-entropy
Keyword: random partitions
Keyword: complete convergence
MSC: 60F15
MSC: 62G30
MSC: 94A17
idZBL: Zbl 1149.94003
idMR: MR2405057
.
Date available: 2009-09-24T20:32:26Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135835
.
Reference: [1] Baum L. E., Katz M.: Convergence rates in the law of large numbers.Trans. Amer. Math. Soc. 120 (1968), 108–123 MR 0198524
Reference: [2] Bieniek M., Szynal D.: A contribution to results on random partitions of the segment.Internat. J. Pure and Appl. Math. 13 (2004), 3, 337–378 Zbl 1059.62051, MR 2057117
Reference: [3] Burbea N., Rao N.: Entropy differential metrics and divergence measures in probability spaces: a unified approach.J. Multivariate Anal. 12 (1982), 575–596 MR 0680530
Reference: [4] Darling D. A.: On a class of problems related to the random division of an interval.Ann. Math. Statist. 24 (1953), 239–253 Zbl 0053.09902, MR 0058891
Reference: [5] Erdős P.: On a theorem of Hsu and Robbins.Ann. Math. Statist. 20 (1949), 286–291 MR 0030714
Reference: [6] Feller W.: An Introduction to Probability Theory and its Applications.Vol. II. Wiley, New York 1966 Zbl 0598.60003, MR 0210154
Reference: [7] Goldstein S.: On entropy of random partitions of the segment $[0,1]$.Bull. Soc. Sci. Lett. Łódź XXIV 4 (1974), 1–7 MR 0448500
Reference: [8] Gradstein I. S., Ryzyk I. M.: Tables of Integrals, Sums, Series and Products.Fourth edition. Academic Press, New York – London 1965
Reference: [9] Graham R. L., Knuth D. E., Patashnik O.: Concrete Mathematics.Addison–Wesley Publishing Company Advanced Book Program, Reading, MA 1989 Zbl 0836.00001, MR 1001562
Reference: [10] Ekstörm M.: Sum-functions of spacings of increasing order.J. Statist. Plann. Inference 136 (2006), 2535–2546 MR 2279820
Reference: [11] Hall P.: Limit theorems for sums of general functions of $m$-spacings.Math. Proc. Cambridge Philos. Soc. 96 (1984), 517–532 Zbl 0559.62013, MR 0757846
Reference: [12] Hall P.: On power distributional tests based on sample spacings.J. Multivariate Anal. 19 (1986), 201–224 MR 0853053
Reference: [13] Hansen E. R.: A Table of Series and Products.Prentice-Hall, Englewood Clifts, N. J. 1975 Zbl 0438.00001
Reference: [14] Havrda J., Charvát F.: Quantification method in classification process: Concept of structural $\alpha $-entropy.Kybernetika 3 (1967), 30–35 MR 0209067
Reference: [15] Heyde C. C.: A suplement to the strong law of large numbers.J. Appl. Probab. 12 (1975), 173–175 MR 0368116
Reference: [16] Hsu P. L., Robbins H.: Complete convergence and the law of large numbers.Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25–31 Zbl 0030.20101, MR 0019852
Reference: [17] Latter B. D. H.: Measures of genetic distance between indviduals and populations.Publ. Univ. Hawai, Honolulu, Genetic Structure of Populations (1973), 27–39
Reference: [18] Menendez M. L., Morales D., Pardo, L., Salicrú M.: Asymptotic distribution of $\lbrace h,\phi \rbrace $-entropies.Comm. Statist. – Theory Methods 22 (1993), 7, 2015–2031 MR 1238377
Reference: [19] Misra N.: A new test if uniformity based on overlapping sample spacings.Comm. Statist. – Theory Methods 30 (2001), 7, 1435–1470 MR 1861865
Reference: [20] Renyi A.: New nonadditive measures of entropy for discrete probability distributions.In: Proc. 4th Berkeley Symp. Math. Statist. and Prob. Vol. 1, 1961, pp. 547–561 MR 0132570
Reference: [21] Shannon C. E.: A mathematical theory of communications.Bell System Tech. J. 27 (1948), 379–425, 623–656 MR 0026286
Reference: [22] Shao Y., Jimenez R.: Entropy for random partitons and its applications.J. Theoret. Probab. 11 (1998), 417–433 MR 1622579
Reference: [23] Slud E.: Entropy and maximal spacings for random partitions.Z. Warsch. verw. Gebiete 41 (1978), 341–352 Zbl 0353.60019, MR 0488242
Reference: [24] Temme N. M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics.Wiley, New York 1996 Zbl 0856.33001, MR 1376370
Reference: [25] Srivastava H. M., Tu S.-T., Wu T.-C.: Some combinatorial series identities associated with the Digamma function and harmonic numbers.Appl. Math. Lett. 13 (2000), 101–106 Zbl 0953.33001, MR 1755751
.

Files

Files Size Format View
Kybernetika_44-2008-1_7.pdf 764.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo