Previous |  Up |  Next

Article

Title: A note on the Folkman number $F(3,3;5)$ (English)
Author: Bukor, Jozef
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 44
Issue: 4
Year: 1994
Pages: 479-480
.
Category: math
.
MSC: 05C55
MSC: 05D10
idZBL: Zbl 0813.05046
idMR: MR1301955
.
Date available: 2009-09-25T11:00:00Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136618
.
Reference: [1] ERICKSON M.: An upper bound for the Folkman number F(3,3;5).J. Graph Theory 17 (1993), 679-681. Zbl 0791.05039, MR 1244683
Reference: [2] FOLKMAN J.: Graphs with monochromatic complete subgraphs in every edge-coloring.SIAM J. Appl. Math. 18 (1970), 19-24. Zbl 0193.53103, MR 0268080
Reference: [3] GRAHAM R. L.: On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon.J. Combin. Theory 4 (1968), 300. MR 0219443
Reference: [4] GRAHAM R. L., SPENCER J. H.: On small graphs with forced monochromatic triangles.In: Recent Trends in Graph Theory. Lecture Notes in Math. 186. Springer. New York-Berlin, 1971, pp. 137-141. Zbl 0214.23201, MR 0291018
Reference: [5] IRVING R. W.: On a Bound of Graham and Spencer for graph-coloring constant.J. Combin. Theory Ser. B 15 (1973), 200-203. MR 0321778
Reference: [6] LIN S.: On Ramsey numbers and $K_r$-coloring of graphs.J. Combin. Theory Ser. B 12 (1972), 89-72. MR 0289357
.

Files

Files Size Format View
MathSlov_44-1994-4_7.pdf 233.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo