Previous |  Up |  Next

Article

Title: Modular median algebras generated by some partial modular median algebras (English)
Author: Draškovičová, Hilda
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 4
Year: 1996
Pages: 405-412
.
Category: math
.
MSC: 08B15
idZBL: Zbl 0889.08010
idMR: MR1472634
.
Date available: 2009-09-25T11:17:51Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136679
.
Reference: [1] AVANN S. P.: Metric ternary distributive semilattices.Proc. Amer. Math. Soc. 12 (1961). 407-414. MR 0125807
Reference: [2] BAKER K. A.: Finite equational basis for finite algebras in a congruence distributive equational class.Adv. Math. 24 (1977), 207-243. MR 0447074
Reference: [3] BANDELT H. J.-HEDLIKOVA J.: Median algebras.Discrete Math. 45 (1983), 1-30. Zbl 0538.08003, MR 0700848
Reference: [4] BANDELT H. J.,MULDER H. M.-WILKEIT E.: Quasi-median graphs and algebras.J. Graph Theory 18 (1994), 681-703. Zbl 0810.05057, MR 1297190
Reference: [5] BIRKHOFF G.-KISS S. A.: A ternary operation in distributive lattices.Bull. Amer. Math. Soc. 53 (1947), 749-752. Zbl 0031.25002, MR 0021540
Reference: [6] DRAŠKOVIČOVÁ H.: Modular median algebra.Math. Slovaca 32 (1982), 269-281. MR 0670003
Reference: [7] DRAŠKOVIČOVÁ H.: On some classes of perfect media.In: General Algebra 1988 (Proc. of the International Conference held in memory of W. Nőbauer, Krems, Austria, August 21-27, 1988), Elsevier Science Publisher B.V. (North-Holland), 1990, pp. 65-84. MR 1060345
Reference: [8] DRAŠKOVIČOVÁ H.: Varieties of modular median algebras.In: Contribution to General Algebra 7 (Proc. of the Vienna Conference, June 14-17, 1990), Verlag Holder-Pichler-Tempsky, Wien, 1991, pp. 119-125. MR 1143073
Reference: [9] FRIED E.-PIXLEY A. F.: The dual discriminator function in universal algebras.Acta Sci. Math. (Szeged) 41 (1979), 83-100. MR 0534502
Reference: [10] HASHIMOTO J.: A ternary operation in lattices.Math. Japon. 2 (1951), 49-52. Zbl 0044.02102, MR 0045688
Reference: [11] HEDLÍKOVÁ J.: Chains in modular ternary latticoids.Math. Slovaca 27 (1977). 249-256. Zbl 0359.06019, MR 0536142
Reference: [12] HEDLÍKOVÁ J.: Ternary spaces, media and Chebyshev sets.Czechoslovak Math. J. 33(108) (1983), 373-389. Zbl 0544.51011, MR 0718922
Reference: [13] ISBELL J. R.: Median algebra.Trans. Amer. Math. Soc. 260 (1980), 319-362. Zbl 0446.06007, MR 0574784
Reference: [14] JÓNSSON B.: Algebras whose congruence lattices are distributive.Math. Scand. 21 (1967), 110-121. MR 0237402
Reference: [15] KOLIBIAR M.-MARCISOVA T.: On a question of J. Hashimoto.Mat. Časopis 24 (1974), 179- 185. Zbl 0285.06008, MR 0351939
Reference: [16] McKENZIE R.: Para-primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties.Algebra Universalis 8 (1978). 336-348. Zbl 0383.08008, MR 0469853
Reference: [17] MULDER H. M.: The interval function of a graph.Math. Centre Tracts 132. Mathematisch Centrum, Amsterdam. Zbl 1205.05074, MR 0605838
Reference: [18] NEBESKÝ L.: Algebraic properties of Husimi trees.Casopis Pest. Mat. 107 (1982). 116-123. Zbl 0502.05059, MR 0659742
Reference: [19] SHOLANDER M.: Trees, lattices, order and betweenness.Proc. Amer. Math. Soc. 3 (1952), 369-381. MR 0048405
Reference: [20] SHOLANDER M.: Medians and betweenness.Proc. Amer. Math. Soc. 5 (1954). 801-807. Zbl 0056.26101, MR 0064749
Reference: [21] SHOLANDER M.: Medians, lattices and trees.Proc. Amer. Math. Soc. 5 (1954). 808-812. Zbl 0056.26201, MR 0064750
.

Files

Files Size Format View
MathSlov_46-1996-4_11.pdf 606.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo