Previous |  Up |  Next

Article

Title: Nearly-idempotent plain algebras are indeed nearly idempotent plain algebras (English)
Author: Szendrei, Ágnes
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 4
Year: 1996
Pages: 391-403
.
Category: math
.
MSC: 08A05
MSC: 08A40
idZBL: Zbl 0889.08006
idMR: MR1472633
.
Date available: 2009-09-25T11:17:43Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129412
.
Reference: [1] CLARK D. M.-KRAUSS P. H.: Plain para primal algebras.Algebra Universalis 11 (1980), 365-388. Zbl 0455.08005, MR 0602022
Reference: [2] FREESE R.-McKENZIE R.: Commutator Theory for Congruence Modular Varieties.LMS Lecture Notes vol. 125, Cambridge University Press, Cambridge-New York, 1987. Zbl 0636.08001, MR 0909290
Reference: [3] KEARNES K. A.: Every nearly idempotent plain algebra generates a minimal variety.Algebra Universalis 34 (1995), 322-325. Zbl 0834.08002, MR 1348955
Reference: [4] KEARNES K. A.-SZENDREI Á.: Projectivity and isomorphism of strictly simple algebras.Preprint, 1996.
Reference: [5] McKENZIE R.: On minimal, locally finite varieties with permuting congruence relations.Preprint, 1976.
Reference: [6] McKENZIE R.: An algebraic version of categorical equivalence for varieties and more general algebraic categories.In: Logic and Algebra. Proceedings of the Magari Conference, Pontignano, Italy, April 1994, pp. 211-243; Lecture Notes in Pure and Appl. Math. 180, M. Dekker, New Yоrk, 1996. MR 1404941
Reference: [7] POST E. L.: The Two-Valued Iterative Systems of Mathematical Logic.Ann. of Math. Stud. 5, Princeton Univ. Press, Princeton, 1941. Zbl 0063.06326, MR 0004195
Reference: [8] SZENDREI Á.: Clones in Universal Algebra.Sém. Math. Sup. 99 (1986). Zbl 0603.08004, MR 0859550
Reference: [9] SZENDREI Á.: Idempotent algebras with restrictions on subalgebras.Acta Sci. Math. (Szeged) 51 (1987), 251-268. Zbl 0633.08002, MR 0911575
Reference: [10] SZENDREI Á.: Every idempotent plain algebra generates a minimal variety.Algebra Universal s 25 (1988), 36-39. Zbl 0618.08002, MR 0935000
Reference: [11] SZENDREI Á.: Term minimal algebras.Algebra Universalis 32 (1994), 439-477. Zbl 0812.08001, MR 1300482
Reference: [12] SZENDREI A.: Expansions of minimal varieties.Acta Sci. Math. (Szeged) 60 (1995), 659-679. Zbl 0833.08005, MR 1348937
Reference: [13] TAYLOR W.: The fine spectrum of a variety.Algebra Universalis 5 (1975), 263-303. Zbl 0336.08004, MR 0389716
.

Files

Files Size Format View
MathSlov_46-1996-4_10.pdf 946.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo