Previous |  Up |  Next

Article

Title: The Brooks-Jewett theorem for $k$-triangular functions (English)
Author: Salvati, Simonetta
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 50
Issue: 3
Year: 2000
Pages: 247-257
.
Category: math
.
MSC: 03G12
MSC: 28A33
idZBL: Zbl 0986.03048
idMR: MR1775299
.
Date available: 2009-09-25T11:44:31Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136777
.
Reference: [1] AGAFONOVA L. V.- KLIMKIN V. M.: A Nikodym theorem for triangular set functions.Siberian Math. J. 15 (1974), 669-674. MR 0348073
Reference: [2] ANTOSIK P.- PAP E.: A Simplification of the proof of Rosenthaľs lemma for measures on fields.In: Convergence methods in analуsis, Proc. 2nd Conf., Szczуrk/Pol., 1981, pp. 26-31.
Reference: [3] ANTOSIK P.-SAEKI S.: A lemma on set functions and its applications.Dissertationes Math. (Rozprawу Mat.) 340 (1995), 13-21. Zbl 0837.28011, MR 1342564
Reference: [4] ANTOSIK P.-SWARTZ C.: Matrix Methods in Analysis.Lecture Notes in Math. 1113, Springer Verlag, New York, 1985. Zbl 0564.46001, MR 0781343
Reference: [5] ANTOSIK P.-SWARTZ, C: A theorem on matrices and its applications in functional analysis.Studia Math. 77 (1984), 197-205. Zbl 0538.46031, MR 0745276
Reference: [6] AVALLONE A.-LEPELLERE M. A.: Modular functions: uniform boundedness and compactness.Rend. Circ. Mat. Palermo (2) (To appear). Zbl 0931.28009, MR 1633479
Reference: [7] BERAN L.: Orthomodular Lattices, Algebraic Approach.Academia Prague, Reidel, Dordrecht, 1984. MR 0785005
Reference: [8] BIRKHOFF G.-VON NEUMANN J.: The logic of quantum mechanics.Ann. of Math. (2) 37 (1936), 823-843. MR 1503312
Reference: [9] CONSTANTINESCU C.: Some properties of spaces of measures.Atti Sem. Mat. Fis. Univ. Modena Suppl. 35 (1989). Zbl 0696.46027, MR 0994282
Reference: [10] D'ANDREA A. B.-DE LUCIA P.: The Brooks-Jewett theorem on an orthomodular lattice.J. Math. Anal. Appl. 154 (1991), 507-522. MR 1088647
Reference: [11] DE LUCIA P.-PAP E.: Nikodym convergence theorem for uniform space valued functions defined on D-posets.Math. Slovaca 45 (1995), 367-376. Zbl 0856.28008, MR 1387053
Reference: [12] DE LUCIA P.-SALVATI S.: A Caficro characterization of uniform s-boundedn ss.Rend. Circ. Mat. Palermo 40 (199 4), 121-128. MR 1407085
Reference: [13] DE LUCIA P.-TRAYNOR T.: Non-commutative group valued measures on an orthomodular poset.Math. Japonica 40 (1994), 309-315. Zbl 0812.28008, MR 1297247
Reference: [14] DIESTEL J.-UHL J. J.: Vector Measures.Math. Surveys Monographs 15, Amer. Math. Soc, Providence, RI, 1977. Zbl 0369.46039, MR 0453964
Reference: [15] DOBRAKOV I.: On submeasures I.Dissertationes Math. (Rozprawy Mat.) 112 (1974), 1-35. Zbl 0292.28001, MR 0367140
Reference: [16] DREWNOWSKI L.: On the continuity of certain non-additive set functions.Colloq. Math. 38 (1978), 243-253. Zbl 0398.28003, MR 0492153
Reference: [17] GUARIGLIA E.: K-triangular functions on an ortho-modular lattice and the Brooks-Jewett theorem.Rad. Mat. 6 (1990), 241-251. MR 1146880
Reference: [18] GUARIGLIA E.: Uniform boundedness theorems for k-triangular set functions.Acta Sci. Math. (Szeged) 54 (1990), 391-407. Zbl 0726.28008, MR 1096818
Reference: [19] GUSEL'NIKOV N. S.: Triangular set functions and Nikodym's theorem on the uniform boundedness of a family of measures.Mat. Sb. 35 (1979), 19-33. Zbl 0418.28003
Reference: [20] GUSEL'NIKOV N. S.: Extension of quasi-Lipschitz set functions.Math. Notes 17 (1975), 14-19. Zbl 0355.28001, MR 0374376
Reference: [21] HABIL E. D.: The Brooks-Jewett theorem for k-triangular functions on difference posets and orthoalgebras.Math. Slovaca 47 (1997), 417-428. Zbl 0961.28003, MR 1796954
Reference: [22] KALMBACH G.: Orthomodular Lattices.Academic Press, London-New York, 1983. Zbl 0528.06012, MR 0716496
Reference: [23] KUPKA J.: A short proof and generalization of a measure theoretic disjointization lemma.Proc. Amer. Math. Soc. 45 (1974), 70-72. Zbl 0291.28004, MR 0342666
Reference: [24] PAP E.: The Vitali-Hahn-Saks theorems for k-triangular set functions.Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. Zbl 0626.28001, MR 0922985
Reference: [25] PAP E.: A generalization of a theorem of Dieudonne for k-triangular set functions.Acta Sci. Math. (Szeged) 50 (1986), 159-167. Zbl 0609.28002, MR 0862190
Reference: [26] PAP E.: Null-Additive Set Functions.Math. Appl. 337, Kluwer Acad. Publ., Dordrecht, 1995. Zbl 0968.28010, MR 1368630
Reference: [27] PAP E.: Funkcionalna analiza.Institut za matematiku, Novi Sad, 1982. Zbl 0496.46001, MR 0683763
Reference: [28] PTAK P.-PULMANNOVA S.: Orthomodular Structures as Quantum Logics.Kluwer Acad. Publ., Dordrecht, 1991. Zbl 0743.03039, MR 1176314
Reference: [29] SALVATI S.: Teoremi di convergenza in teoria della misura non commutativa.PhD Thesis, 1997.
Reference: [30] SWARTZ C.: An Introduction to Functional Analysis.Dekker, New York, 1992. Zbl 0751.46002, MR 1156078
Reference: [31] VON NEUMANN J.: Matematische Grendlagen der Quantunmechanik.Springer Verlag, Berlin, 1932 [English translation: Princeton University Press 1955].
Reference: [32] WEBER H.: A diagonal theorem. Answer to a question of Antosik.Bull. Polish Acad. Sci. Math. 41 (1993), 95-102. Zbl 0799.40005, MR 1414755
Reference: [33] WEBER H.: Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodym's boundedness theorem.Rocky Mountain J. Math. 16 (1986), 253-275. Zbl 0604.28006, MR 0843053
.

Files

Files Size Format View
MathSlov_50-2000-3_1.pdf 891.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo