Previous |  Up |  Next

Article

Title: The existence of multiple positive solutions of $p$-Laplacian boundary value problems (English)
Author: Yuji, Liu
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 3
Year: 2007
Pages: [225]-242
.
Category: math
.
MSC: 34B15
MSC: 34B18
MSC: 47N20
idZBL: Zbl 1150.34006
idMR: MR2357821
.
Date available: 2009-09-25T14:38:09Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136951
.
Reference: [1] AGARWAL R. P.-O'REGAN D.-WONG P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations.Kluwer Academic Publ., Dordrecht, 1999. Zbl 1157.34301, MR 1680024
Reference: [2] BAI C.-FANG J.: Existence of multiple positive solutions for nonlinear m-point boundary value problems.Appl. Math. Comput. 140 (2003), 297-305. Zbl 1030.34026, MR 1953901
Reference: [3] BAI C.-FANG J.: Existence of multiple positive solutions for nonlinear multi-point boundary value problems.J. Math. Anal. Appl. 281 (2003), 76-85. MR 1980075
Reference: [4] BITSADZE A. V.: On the theory of nonlocal boundary value problems.Soviet Math Dock, (please specify the journal) 30 (1964), 8-10.
Reference: [5] BITSADZE A. V.-SAMARSKII A. A.: Some elementary generalizations of linear elliptic boundary value problems.Dokal. Akad. Nauk. SSSR 185 (1969), 739-742. MR 0247271
Reference: [6] DE COSTER C.: Pairs of positive solutions for the one-dimension p-Laplacian.Nonlinear Anal. 23 (1994), 669-681. MR 1297285
Reference: [7] DEIMLING K.: Nonlinear Functional Analysis.Springer-Verlag, New York, 1985. Zbl 0559.47040, MR 0787404
Reference: [8] GUO D.-LAKSHMIKANTHAM V.: Nonlinear Problems on Abstract Cones.Academic Press, San Diego, CA, 1988.
Reference: [9] GUPTA C. P.: A generalized multi-point boundary value problem for second-order ordinary differential equations.Appl. Math. Comput. 89 (1998), 133-146. Zbl 0910.34032, MR 1491699
Reference: [10] GUPTA C. P.: A non-resonant multi-point boundary value problem for a p-Laplacian type operator.J. Differential Equations 10 (2003), 143-152. Zbl 1032.34012, MR 1976639
Reference: [11] IL'IN V.-MOISEEV E.: Nonlocal boundary value problems of the second kind for a Sturm-Liouvile operator.Differ. Equ. 23 (1987), 979-987.
Reference: [12] JIANG D.-GUO W.: Upper and lower solution method and a singular boundary value problem for one-dimension p-Laplacian.J. Math. Anal. Appl. 252 (2000), 631-648. MR 1800189
Reference: [13] JIANG D.-LIU H.: On the existence of nonnegative radial solutions for the one-dimension p-Laplacian elliptic systems.Ann. Polon. Math. 71 (1999), 19-29. MR 1684042
Reference: [14] KARAKOSTAS G. L.-TSAMATOS P. CH.: Sufficient conditions for the existence of nonnegative solutions of a local boundary value problem.Appl. Math. Lett. 15 (2002), 401-407. MR 1902271
Reference: [15] LAN K.: Multiple positive solutions of semi-linear differential equations with singularities.J. London Math. Soc. 63 (2001), 690-704. MR 1825983
Reference: [16] LIAN W.-WONG F.: Existence of positive solutions for higher-order generalized p-Laplacian BVPs.Appl. Math. Lett. 13 (2000), 35-43. Zbl 0964.34018, MR 1772689
Reference: [17] LIU Y.-GE W.: Multiple positive solutions to a three-point boundary value problem with p-Laplacian.J. Math. Anal. Appl. 277 (2003), 293-302. Zbl 1026.34028, MR 1954477
Reference: [18] LIU B.-YU J.: Solvability of multi-point boundary value problems at resonance.Appl. Math. Comput. 143 (2003), 275-299. Zbl 1021.34013, MR 1981696
Reference: [19] MA R.: Existence of solutions of nonlinear m-point boundary value problems.J. Math. Anal. Appl. 256 (2001), 556-567. Zbl 0988.34009, MR 1821757
Reference: [20] MA R.-CASTANEDA N.: Existence of solutions of non-linear m-point boundary value problems.J. Math. Anal. Appl. 256 (2001), 556-567. MR 1821757
Reference: [21] O'REGAN D.: Positive solutions to singular and nonsingular second-order boundary value problems.J. Math. Anal. Appl. 142 (1989), 40-52. MR 1011407
Reference: [22] O'REGAN D.: Some general existence principles and results for $[\Phi(y')]' = q(t) f(t,y,y')$ $(0 < t < 1)$.SIAM J. Math. Anal. 24 (1993), 648-668. MR 1215430
Reference: [23] WANG J.-GUO W.: A singular boundary value problem for one-dimension p-Laplacian.J. Math. Anal. Appl. 201 (2001), 851-866.
Reference: [24] WANG J. Y.-ZHENG D. W.: On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian.ZAMM Z. Angew. Math. Mech. 77 (1997), 477-479. Zbl 0879.34032, MR 1455893
Reference: [25] XIAOMING H.-GE W.: Triple solutions for second order three-point boundary value problems.J. Math. Anal. Appl. 268 (2002), 256-265. Zbl 1043.34015, MR 1893205
Reference: [26] GUO Y.-GE W.: Three positive solutions for the one dimension p-Laplacian.J. Math. Anal. Appl. 286 (2003), 491-508. MR 2008845
Reference: [27] LU H.-O'REGAN D.-ZHONG C.: Multiple positive solutions for one dimension I singular p-Laplacian.Appl. Math. Comput. 133 (2002), 407-422. MR 1924626
Reference: [28] KARAKOSTAS G. L.: Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a supmultiplicative-like function.Differ. Equ. 69 (2004), 1-13. MR 2057656
Reference: [29] KARAKOSTAS G. L.: Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function.Differ. Equ. 68 (2004), 1-12. Zbl 1057.34010, MR 2057655
.

Files

Files Size Format View
MathSlov_57-2007-3_4.pdf 1.521Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo