Previous |  Up |  Next

Article

Title: Oscillation and stability of nonlinear discrete models exhibiting the Allee effect (English)
Author: Elabbasy, Elmetwally M.
Author: Saker, Samir H.
Author: El-Metwally, Hamdy
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 3
Year: 2007
Pages: [243]-258
.
Category: math
.
MSC: 39A10
MSC: 39A11
MSC: 39A12
MSC: 92D25
idZBL: Zbl 1150.39005
idMR: MR2357822
.
Date available: 2009-09-25T14:38:17Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136952
.
Reference: [1] AGARWAL R. P.: Difference Equations and Inequalities, Theory, Methods and Applications.(2nd ed., revised and expanded) Marcel Dekker, New York, 2000. Zbl 0952.39001, MR 1740241
Reference: [2] AGARWAL R. P.-WONG P. J. Y.: Advanced Topics in Difference Equations.Math. Appl. 404, Kluwer Acad. PubL, Dordrecht, 1997. Zbl 0878.39001, MR 1447437
Reference: [3] ALLEE W. C.: Animal aggregation.Quart. Rev. Biol. 2 (1927), 367-398.
Reference: [4] ALLEE W. C.: Animal Aggregation. A Study in General Sociology.Chicago Universitу Press, Chicago, 1933.
Reference: [5] CHEN M.-P.-YU J. S.: Oscillation of delay difference equations with variable coefficients.In: Proceeding of the First International Conference on Difference Equations (S. N. Elaуdi et al., eds), Gordon and Breach, New York, 1994 pp. 105-114. MR 1678657
Reference: [6] GOPALSAMY K.-LADAS G.: On the oscillation and asymptotic behavior of $\dot N(t)=N(t)[a+bN(t-\tau)-cN\sp 2(t-\tau)]$.Quart. Appl. Math. 3 (1990), 433-440. Zbl 0719.34118, MR 1074958
Reference: [7] ELAYDI S.-KOCIC V.-LI J.: Global stability of nonlinear difference equations.J. Difference Equ. Appl. 2 (1996), 87-96. MR 1375598
Reference: [8] ERBE L. H.-ZHANG B. G.: Oscillation of discrete analogues of delay equations.Differential Integral Equations 2 (1989), 300-309. Zbl 0723.39004, MR 0983682
Reference: [9] ELABBASY E. M.-SAKER S. H.-SAIF K.: Oscillation of nonlinear delay differential equations with application to models exhibiting the Allee effect.Far East J. Math. Sci. 1 (1999), 603-620. Zbl 0939.34061, MR 1698443
Reference: [10] LADAS G.-PHILOS C. H.-SFICAS Y.: Sharp condition for the oscillation of delay difference equations.J. Appl. Math. Simul. 2 (1989), 101-111. MR 1010549
Reference: [11] KUBIACZYK I.-SAKER S. H.: Oscillation and global attractivity in a discrete survival red blood cells model.Appl. Math. (To appear). Zbl 1057.39002, MR 2030065
Reference: [12] KOCIC V. L.-LADAS G.: Global Behavior of Nonlinear Differentiall Equations of Higher Order.Kluwer Acadеmic Publishers, Dordrecht, 1993. MR 1247956
Reference: [13] LIU P.-GOPALSAMY K.: Global stability and chaos in a population modul with piece wise constant arguments.Appl. Math. Comput. 101 (1999), 63-88. MR 1675070
Reference: [14] LEVIN S.-MAY R.: A note on difference delay equations.Thеor. Pop. Biol. 9 1976 , 178-187. Zbl 0338.92021, MR 0504043
Reference: [15] STAVROULAKIS I. P.: Oscillation of delay difference equations.Comput. Math. Appl. 29 (1995), 83-88.
Reference: [16] ZHANG G.-ZHOU Y.: Comparison theorems and oscillation criteria for differential equations.J. Math. Anal. Appl. 247 (2000), 397-409. MR 1769085
.

Files

Files Size Format View
MathSlov_57-2007-3_5.pdf 1.201Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo