Previous |  Up |  Next

Article

Title: Remarks on the order for quantum observables (English)
Author: Pulmannová, Sylvia
Author: Vinceková, E.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 6
Year: 2007
Pages: [589]-600
.
Category: math
.
MSC: 06A06
MSC: 47C15
MSC: 81P10
idZBL: Zbl 1164.81001
idMR: MR2358400
.
Date available: 2009-09-25T14:41:50Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136980
.
Reference: [1] BUSCH P.-GRABOWSKI M.-LAHTI P.: Operational Quantum Physics.Springer-Verlag, Berlin, 1995. Zbl 0863.60106, MR 1356220
Reference: [2] CHANG C. C.: Algebraic analysis of many-valued logic.Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302
Reference: [3] CHEVALIER G.-PULMANNOVÁ S.: Some ideal lattices on partial abelian monoids and effect algebras.Order 17 (2000), 75-92. MR 1776935
Reference: [4] DRAZIN M. P.: Natural structures on semigroups with involution.Bull. Amer. Math. Soc. 84 (1978), 139-141. Zbl 0395.20044, MR 0486234
Reference: [5] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht, 2000. Zbl 0987.81005, MR 1861369
Reference: [6] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325-1346. Zbl 1213.06004, MR 1304942
Reference: [7] GIUNTINI R.-GREULING H.: Toward a formal language for unsharp properties.Found. Phys. 19 (1989), 931-945. MR 1013913
Reference: [8] de GROOTE H. F.: On a canonical lattice structure on the effect algebra of a von Neumann algebra.arXiv:math-ph/0410018vl.
Reference: [9] GUDDER S.: An order for quantum observables.Math. Slovaca 56 (2006), 573-589. Zbl 1141.81008, MR 2293588
Reference: [10] GUDDER S.-PULMANNOVA S.: Quotients of partial abelian monoids.Algebra Universalis 38 (1997), 395-421. Zbl 0933.03082, MR 1626347
Reference: [11] HEDLÍKOVÁ J.-PULMANNOVÁ S.: Generalized difference posets and orthoalgebras.Acta Math. Univ. Comenian. (N.S.) 45 (1996), 247-279. Zbl 0922.06002, MR 1451174
Reference: [12] JANOWITZ M. F.: A note on generalized orthomodular lattices.J. Natur. Sci. Math. 8 (1968), 89-94. Zbl 0169.02104, MR 0231762
Reference: [13] JENČA G.: Notes on $R_1$-ideals in partial abelian monoids.Algebra Universalis 43 (2000), 307-319. MR 1785318
Reference: [14] KADISON R.: Order properties of bounded self-adjoint operators.Proc. Amer. Math. Soc. 34 (1951), 505-510. Zbl 0043.11501, MR 0042064
Reference: [15] KOPKA F.-CHOVANEC F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [16] MAYET-IPPOLITO A.: Generalized orthomodular posets.Demonstratio Math. 24 (1991), 263-274. Zbl 0755.06006, MR 1142894
Reference: [17] OLSON P.: The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice.Proc. Amer. Math. Soc. 28 (1971), 537-543.
Reference: [18] PULMANNOVÁ S.-VINCEKOVÁ E.: Riesz ideals in generalized effect algebras and in their unitizations.Algebra Universalis (To appear). Zbl 1139.81007, MR 2373250
Reference: [19] RIEČANOVÁ Z.-MARINOVÁ I.: Generalized homogeneous, prelattice and MV-effect algebras.Kybernetika (Prague) 41 (2005), 129-142. MR 2138764
Reference: [20] TOPPING D. M.: Lectures on von Neumann Algebras.Van Nostrand, London, 1971. Zbl 0218.46061
.

Files

Files Size Format View
MathSlov_57-2007-6_7.pdf 768.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo