Previous |  Up |  Next

Article

Title: Symmetric difference on orthomodular lattices and $Z_2$-valued states (English)
Author: Matoušek, Milan
Author: Pták, Pavel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 535-547
Summary lang: English
.
Category: math
.
Summary: The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space. (English)
Keyword: orthomodular lattice
Keyword: quantum logic
Keyword: symmetric difference
Keyword: Boolean algebra
Keyword: group-valued state
MSC: 03G12
MSC: 06A15
MSC: 28E99
MSC: 81P10
idZBL: Zbl 1212.06021
idMR: MR2583131
.
Date available: 2009-12-22T10:03:19Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137444
.
Reference: [1] Beran L.: Orthomodular Lattices, Algebraic Approach.D. Reidel, Dordrecht, 1985. Zbl 0558.06008, MR 0784029
Reference: [2] Bruns G., Harding J.: Algebraic aspects of orthomodular lattices.in Coecke B., Moore D. and Wilce A., Eds., Current Research in Operational Quantum Logic, 2000, pp. 37--65. Zbl 0955.06003, MR 1907155
Reference: [3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. MR 1861369
Reference: [4] Greechie R.J.: Orthomodular lattices admitting no states.J. Combinatorial Theory 10 (1971), 119--132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [5] Hamhalter J.: Quantum Measure Theory.Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. Zbl 1038.81003, MR 2015280
Reference: [6] : Handbook of Quantum Logic and Quantum Structures.ed. by K. Engesser, D.M. Gabbay and D. Lehmann, Elsevier, 2007. Zbl 1184.81003, MR 2408886
Reference: [7] Gudder S.P.: Stochastic Methods in Quantum Mechanics.North-Holland, New York-Oxford, 1979. Zbl 0439.46047, MR 0543489
Reference: [8] Harding J., Jager E., Smith D.: Group-valued measures on the lattice of closed subspaces of a Hilbert space.Internat. J. Theoret. Phys. 44 (2005), 539--548. Zbl 1130.81306, MR 2153018, 10.1007/s10773-005-3981-x
Reference: [9] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
Reference: [10] Maeda F., Maeda S.: Theory of Symmetric Lattices.Springer, Berlin-Heidelberg-New York, 1970. Zbl 0361.06010, MR 0282889
Reference: [11] Matoušek M.: Orthocomplemented lattices with a symmetric difference.Algebra Universalis 60 (2009), 185--215. MR 2491422, 10.1007/s00012-009-2105-5
Reference: [12] Matoušek M., Pták P.: Orthocomplemented posets with a symmetric difference.Order 26 (2009), 1--21. MR 2487165, 10.1007/s11083-008-9102-8
Reference: [13] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361--369. MR 0968618, 10.2140/pjm.1988.135.361
Reference: [14] Navara M.: An orthomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7--12. Zbl 0809.06008, MR 1191871, 10.1090/S0002-9939-1994-1191871-X
Reference: [15] Navara M., Pták P.: For $n\geq 5$ there is no nontrivial $Z_2$-measure on $L(R^n)$.Internat. J. Theoret. Phys. 43 (2004), 1595--1598. MR 2108296, 10.1023/B:IJTP.0000048805.76224.2d
Reference: [16] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR 1176314
Reference: [17] Svozil K., Tkadlec J.: Greechie diagrams, noexistence of measures in quantum logics, and Kochen--Specker-type constructions.J. Math. Phys. 37 (1996), 5380--5401. MR 1417146, 10.1063/1.531710
Reference: [18] Varadarajan V.S.: Geometry of Quantum Theory I, II.Van Nostrand, Princeton, 1968, 1970.
Reference: [19] Weber H.: There are orthomodular lattices without non-trivial group-valued states: A computer-based construction.J. Math. Anal. Appl. 183 (1994), 89--93. Zbl 0797.06010, MR 1273434, 10.1006/jmaa.1994.1133
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_4.pdf 259.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo