Previous |  Up |  Next

Article

Title: Holomorphic Bloch spaces on the unit ball in $C^n$ (English)
Author: Harutyunyan, A. V.
Author: Lusky, W.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 4
Year: 2009
Pages: 549-562
Summary lang: English
.
Category: math
.
Summary: This work is an introduction to anisotropic spaces of holomorphic functions, which have $\omega$-weight and are generalizations of Bloch spaces on a unit ball. We describe the holomorphic Bloch space in terms of the corresponding $L_\omega ^\infty $ space. We establish a description of $(A^p(\omega ))^*$ via the Bloch classes for all $0<p\leq 1$. (English)
Keyword: weighted Bloch spaces
Keyword: projection
Keyword: inverse mapping
Keyword: dual space
MSC: 32A18
MSC: 46E15
idZBL: Zbl 1212.32005
idMR: MR2583132
.
Date available: 2009-12-22T09:56:41Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137445
.
Reference: [1] Attele R.: Bounded analytic functions and the little Bloch space.Internat. J. Math. Math. Sci. 13 (1990), no. 1, 193--198. Zbl 0701.30045, MR 1038664, 10.1155/S016117129000028X
Reference: [2] Anderson J.M.: Bloch function: The basic theory.Operators and Function Theory (Lancaster, 1984), Reidel, Dordrecht, 1985, pp. 1--17. MR 0810441
Reference: [3] Arazy J.: Multipliers of Bloch functions.University of Haifa, Mathematics Publication Series 54, 1982.
Reference: [4] Bishop C.J.: Bounded functions in the little Bloch space.Pacific J. Math. 142 (1990), no. 2, 209--225. Zbl 0652.30024, MR 1042042, 10.2140/pjm.1990.142.209
Reference: [5] Djrbashian A.E., Shamoian F.A.: Topics in the theory of $ A^p_{\alpha }$ spaces.Teubner Texts in Math., 105, Teubner, Leipzig, 1988. Zbl 0667.30032, MR 1021691
Reference: [6] Djrbashian M.M.: On the representation problem of analytic functions.Soobsh. Inst. Matem. Mekh. Akad. Nauk Armyan. SSR 2 (1948), 3--40.
Reference: [7] Harutyunyan A.V.: Bloch spaces of holomorphic functions in the polydisc.J. Funct. Spaces Appl. 5 (2007), no. 3, 213--230. MR 2352842, 10.1155/2007/353959
Reference: [8] Nowak M.: Bloch space on the unit ball of $ C^n$.Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 461--473. MR 1642142
Reference: [9] Rudin W.: Function Theory in the Unit Ball of $ C^n$.Springer, New York, Heidelberg, Berlin, 1980. MR 0601594
Reference: [10] Seneta E.: Functions of Regular Variation.(in Russian), Nauka, Moscow, 1985.
Reference: [11] Yang W.: Some characterizations of $\alpha$-Bloch spaces on the unit ball of $ C\sp n$.Acta Math. Sci. (English Ed.) 17 (1997), no. 4, 471--477. MR 1613263
Reference: [12] Zhu K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics, 226, Springer, New York, 2005. Zbl 1067.32005, MR 2115155
Reference: [13] Zhou Z.: The essential norms of composition operators between generalized Bloch spaces in the polydisc and their applications.2005, arXiv: math.Fa/0503723v3. Zbl 1131.47021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-4_5.pdf 258.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo