Previous |  Up |  Next

Article

Title: Upper bounds for the density of universality. II (English)
Author: Steuding, Jörn
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 13
Issue: 1
Year: 2005
Pages: 73-82
Summary lang: English
.
Category: math
.
Summary: We prove explicit upper bounds for the density of universality for Dirichlet series. This complements previous results [15]. Further, we discuss the same topic in the context of discrete universality. As an application we sharpen and generalize an estimate of Reich concerning small values of Dirichlet series on arithmetic progressions in the particular case of the Riemann zeta-function. (English)
Keyword: universality
Keyword: effectivity
Keyword: Riemann zeta-function
Keyword: Dirichlet series
MSC: 11M06
MSC: 11M26
MSC: 11M41
idZBL: Zbl 1251.11059
idMR: MR2290420
.
Date available: 2009-12-29T09:17:45Z
Last updated: 2015-03-15
Stable URL: http://hdl.handle.net/10338.dmlcz/137473
.
Reference: [1] Bagchi B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series., Ph.D. thesis, Calcutta, Indian Statistical Institute, 1981
Reference: [2] Bohr H., Jessen B.: Über die Werteverteilung der Riemannschen Zetafunktion II., Acta Math. 58 (1932), 1-55 Zbl 0003.38901, MR 1555343, 10.1007/BF02547773
Reference: [3] Garunkštis R.: The effective universality theorem for the Riemann zeta-function., in: ‘Special activity in Analytic Number Theory and Diophantine equations’, Proceedings of a workshop at the Max Planck-Institut Bonn 2002, R.B. Heath-Brown and B. Moroz (eds.), Bonner math. Schriften 360 (2003) MR 2072675
Reference: [4] Gonek S.M.: Analytic properties of zeta and L-functions., Ph.D. thesis, University of Michigan, 1979 MR 2628587
Reference: [5] Lapidus M.L., Frankenhuijsen M. van: Fractal geometry and number theory., Birkhäuser 2000
Reference: [6] Laurinčikas A.: The universality of the Lerch zeta-functions., Liet. mat. rink. 37 (1997), 367-375 (in Russian); Lith. Math. J. 37 (1997), 275-280 MR 1481388
Reference: [7] Laurinčikas A.: The universality of zeta-functions., in “Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part I”, Acta Appl. Math. 78 (2003), 251-271 MR 2024030, 10.1023/A:1025797802722
Reference: [8] Levinson N., Montgomery H.L.: Zeros of the derivative of the Riemann zeta-function., Acta Math. 133 (1974), 49-65 MR 0417074, 10.1007/BF02392141
Reference: [9] Matsumoto K.: Probabilistic value-distribution theory of zeta-functions., Sugaku 53 (2001), 279-296 (in Japanese); engl. translation in Sugaku Expositions 17 (2004), 51-71 MR 1850006
Reference: [10] Putnam C.R.: On the non-periodicity of the zeros of the Riemann zeta-function., Amer. J. Math. 76 (1954), 97-99 Zbl 0055.06904, MR 0058703, 10.2307/2372402
Reference: [11] Putnam C.R.: Remarks on periodic sequences and the Riemann zeta-function., Amer. J. Math. 76 (1954) MR 0064865
Reference: [12] Reich A.: Universelle Wertverteilung von Eulerprodukten., Nach. Akad. Wiss. Göttingen, Math.-Phys. Kl. (1977), 1-17 MR 0567687
Reference: [13] Reich A.: Wertverteilung von Zetafunktionen., Arch. Math. 34 (1980), 440-451 MR 0593771
Reference: [14] Reich A.: Dirichletreihen und gleichverteilte Folgen., Analysis 1 (1981), 303-312 Zbl 0496.10026, MR 0727881, 10.1524/anly.1981.1.4.303
Reference: [15] Steuding J.: Upper bounds for the density of universality., Acta Arith. 107 (2003), 195-202 MR 1970823, 10.4064/aa107-2-6
Reference: [16] Steuding J.: Value-distribution of L-functions., Habilitation thesis, Frankfurt 2003, to appear in Lecture Notes of Mathematics, Springer Zbl 1130.11044, MR 2025535
Reference: [17] Titchmarsh E.C.: The theory of the Riemann zeta-function., 2nd ed., revised by D.R. Heath-Brown, Oxford University Press 1986 Zbl 0601.10026, MR 0882550
Reference: [18] Frankenhuijsen M. van: Arithmetic progressions of zeros of the Riemann zeta-function., J. Number Theor. 115 (2005), 360-370 MR 2180508, 10.1016/j.jnt.2005.01.002
Reference: [19] Voronin S.M.: Theorem on the ’universality’ of the Riemann zeta-function., Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975 (in Russian); engl. translation in Math. USSR Izv. 9 (1975), 443-445 Zbl 0333.30023, MR 0472727
Reference: [20] Voronin S.M.: Analytic properties of Dirichlet generating functions of arithmetic objects., Ph.D. thesis, Moscow, Steklov Math. Institute, 1977 (in Russian)
.

Files

Files Size Format View
ActaOstrav_13-2005-1_8.pdf 281.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo