Previous |  Up |  Next

Article

Title: Banach algebra techniques in the theory of arithmetic functions (English)
Author: Lucht, Lutz G.
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 16
Issue: 1
Year: 2008
Pages: 45-56
.
Category: math
.
Summary: For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb {C}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log {\mathbb {N}}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras. (English)
Keyword: Banach algebras
Keyword: arithmetic functions
Keyword: weighted norms
Keyword: inversion
Keyword: general Dirichlet series
Keyword: Euler products
MSC: 11N37
MSC: 11N56
MSC: 40E10
MSC: 46B25
MSC: 46J99
idZBL: Zbl 1209.11089
idMR: MR2498636
.
Date available: 2009-12-29T09:24:11Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137500
.
Reference: [1] Delange H.: Sur les fonctions arithmétiques multiplicatives.. Ann. Scient. École Norm. Sup., $3^{\rm e}$ série, 78 (1961), 273–304. Zbl 0234.10043, MR 0169829
Reference: [2] Edwards D.A.: On absolutely convergent Dirichlet series.. Proc. Amer. Math. Soc. 8 (1957), 1067–1074. MR 0096086, 10.1090/S0002-9939-1957-0096086-1
Reference: [3] Elliott P.D.T.A.: A mean-value theorem for multiplicative functions.. Proc. London Math. Soc. 31 (1975), 418–438. Zbl 0319.10055, MR 0387220, 10.1112/plms/s3-31.4.418
Reference: [4] Gelfand I. M.: Über absolut konvergente trigonometrische Reihen und Integrale.. Rec. Math. (Mat. Sbornik) N. S. vol. 9 (1941), 51–66. Zbl 0024.32302, MR 0004727
Reference: [5] Halász G.: Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen.. Acta Math. Sci. Hung. 19 (1968), 365–403. MR 0230694, 10.1007/BF01894515
Reference: [6] Heppner E., W. Schwarz: Benachbarte multiplikative Funktionen.. Studies in Pure Mathematics (To the Memory of Paul Turán). Budapest 1983, 323–336. Zbl 0518.10050, MR 0820232
Reference: [7] Hewitt E., J.H. Williamson: Note on absolutely convergent Dirichlet series.. Proc. Amer. Math. Soc. 8 (1957), 863–868. Zbl 0081.06804, MR 0090680, 10.1090/S0002-9939-1957-0090680-X
Reference: [8] Indlekofer K.-H.: A mean-value theorem for multiplicative functions.. Math. Z. 172 (1980), 255–271. Zbl 0416.10035, MR 0581443, 10.1007/BF01215089
Reference: [9] Lucht L.G.: Über benachbarte multiplikative Funktionen.. Arch. Math. 30, 40–48 (1978). Zbl 0374.10029, MR 0480396, 10.1007/BF01226017
Reference: [10] Lucht L.G.: An application of Banach algebra techniques to multiplicative functions.. Math. Z. 214 (1993), 287–295. Zbl 0805.11067, MR 1240890, 10.1007/BF02572405
Reference: [11] Lucht L.G.: Weighted relationship theorems and Ramanujan expansions.. Acta Arith. 70 (1995), 25–42. Zbl 0818.11005, MR 1318760
Reference: [12] Lucht L.G., K. Reifenrath: Weighted Wiener-Lévy theorems.. Analytic Number Theory. Proceedings of a Conference in Honor of Heini Halberstam, Urbana-Champaign, 1995. Vol. 2, Birkhäuser, Boston 1996, 607–619. MR 1409381
Reference: [13] Knopfmacher J.: Abstract Analytic Number Theory.. 2nd ed., Dover Publ., New York 1975. Zbl 0322.10001, MR 0419383
Reference: [14] Ramanujan S.: On certain trigonometrical sums and their applications in the theory of numbers.. Transact. Cambridge Philos. Soc. 22 (1918), 259–276.
Reference: [15] Rudin W.: Real and Complex Analysis.. McGraw-Hill, London 1970.
Reference: [16] Schwarz W.: Eine weitere Bemerkung über multiplikative Funktionen.. Coll. Math. 28 (1973), 81–89. Zbl 0249.10039, MR 0327695
Reference: [17] Spilker J., W. Schwarz: Wiener-Lévy-Sätze für absolut konvergente Reihen.. Arch. Math. 32, 267–275 (1979). Zbl 0394.42004, MR 0541625, 10.1007/BF01238499
Reference: [18] Schwarz W., J. Spilker: Arithmetical Functions.. Cambridge University Press, Cambridge, 1994. Zbl 0807.11001, MR 1274248
Reference: [19] Wiener N.: Tauberian Theorems.. Annals of Math. 33 (1932), 1–100. Zbl 0005.25003, MR 1503035, 10.2307/1968102
Reference: [20] Wirsing E.: Das asymptotische Verhalten von Summen über multiplikative Funktionen.. Math. Ann. 143 (1961), 75–102. Zbl 0104.04201, MR 0131389, 10.1007/BF01351892
Reference: [21] Wirsing E.: Das asymptotische Verhalten von Summen über multiplikative Funktionen II.. Acta Math. Acad. Hung. 18 (1967), 411–467. Zbl 0165.05901, MR 0223318, 10.1007/BF02280301
.

Files

Files Size Format View
ActaOstrav_16-2008-1_5.pdf 511.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo