Previous |  Up |  Next

Article

Title: The tame degree and related invariants of non-unique factorizations (English)
Author: Halter-Koch, Franz
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 16
Issue: 1
Year: 2008
Pages: 57-68
.
Category: math
.
Summary: Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the $\omega $-invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties. (English)
Keyword: Non-unique factorizations
Keyword: tame degree
Keyword: atomic monoids
MSC: 13A05
MSC: 20M14
idZBL: Zbl 1196.13005
idMR: MR2498637
.
Date available: 2009-12-29T09:24:26Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137501
.
Reference: [1] Anderson D. F.: Elasticity of factorizations in integral domains: a survey.. Factorization in Integral Domains, D. D. Anderson (ed.), pp. 1–29, Marcel Dekker, 1997 Zbl 0903.13008, MR 1460767
Reference: [2] Gao W., Geroldinger A.: On products of k-atoms.. Monatsh. Math., to appear. Zbl 1184.20051, MR 2488859
Reference: [3] Geroldinger A., Halter-Koch F.: Non-Unique Factorizations.. Algebraic, Combinatorial and Analytic Theory. Chapman & Hall/CRC, 2006. Zbl 1117.13004, MR 2194494
Reference: [4] Geroldinger A., Halter-Koch F.: Non-Unique Factorizations: A Survey.. Multiplicative Ideal Theory in Commutative Algebra, J.W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (eds.), pp. 217–226, Springer 2006. Zbl 1117.13004, MR 2265810
Reference: [5] Geroldinger A., Hassler W.: Local tameness of $v$-noetherian monoids., J. Pure Appl. Algebra 212 (2008), 1509–1524. Zbl 1133.20047, MR 2391663, 10.1016/j.jpaa.2007.10.020
Reference: [6] Geroldinger A., Hassler W.: Arithmetic of Mori domains and monoids., J. Algebra 319 (2008), 3419–3463. Zbl 1195.13022, MR 2408326, 10.1016/j.jalgebra.2007.11.025
Reference: [7] Halter-Koch F.: Non-Unique factorizations of algebraic integers., Funct. Approx., to appear. Zbl 1217.11096, MR 2490087
.

Files

Files Size Format View
ActaOstrav_16-2008-1_6.pdf 519.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo