| Title:
             | 
Conjugated algebras (English) | 
| Author:
             | 
Chajda, Ivan | 
| Language:
             | 
English | 
| Journal:
             | 
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica | 
| ISSN:
             | 
0231-9721 | 
| Volume:
             | 
48 | 
| Issue:
             | 
1 | 
| Year:
             | 
2009 | 
| Pages:
             | 
17-23 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We generalize the correspondence between basic algebras and lattices with section antitone involutions to a more general case where no lattice properties are assumed. These algebras are called conjugated if this correspondence is one-to-one. We get conditions for the conjugary of such algebras and introduce the induced relation. Necessary and sufficient conditions are given to indicated when the induced relation is a quasiorder which has “nice properties", e.g. the unary operations are antitone involutions on the corresponding intervals. (English) | 
| Keyword:
             | 
Conjugated algebras | 
| Keyword:
             | 
basic algebra | 
| Keyword:
             | 
section antitone involution | 
| Keyword:
             | 
quasiorder | 
| MSC:
             | 
06A12 | 
| MSC:
             | 
06D35 | 
| MSC:
             | 
08A40 | 
| idZBL:
             | 
Zbl 1195.08002 | 
| idMR:
             | 
MR2641944 | 
| . | 
| Date available:
             | 
2010-02-11T13:53:44Z | 
| Last updated:
             | 
2012-05-04 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/137507 | 
| . | 
| Reference:
             | 
[1] Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval.Comment. Math. Univ. Carol. 44 (2003), 577–585. Zbl 1101.06003, MR 2062874 | 
| Reference:
             | 
[2] Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras.Discuss. Math., Gener. Algebra and Appl. 24 (2004), 31–42. Zbl 1082.03055, MR 2117673 | 
| Reference:
             | 
[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures.Heldermann Verlag, Lemgo, 2007. Zbl 1117.06001, MR 2326262 | 
| Reference:
             | 
[4] Chajda, I., Kühr, J.: A non-associative generalization of MV-algebras.Math. Slovaca 57 (2007), 1–12. Zbl 1150.06012, MR 2357826 | 
| Reference:
             | 
[5] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097 | 
| Reference:
             | 
[6] Halaš, R., Plojhar, L.: Weak MV-algebras.Math. Slovaca 58 (2008), 1–10. Zbl 1174.06009, MR 2399238 | 
| . |