Previous |  Up |  Next

Article

Title: Pure filters and stable topology on BL-algebras (English)
Author: Eslami, Esfandiar
Author: Haghani, Farhad Kh.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 3
Year: 2009
Pages: 491-506
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce stable topology and $F$-topology on the set of all prime filters of a BL-algebra $A$ and show that the set of all prime filters of $A$, namely Spec($A$) with the stable topology is a compact space but not $T_0$. Then by means of stable topology, we define and study pure filters of a BL-algebra $A$ and obtain a one to one correspondence between pure filters of $A$ and closed subsets of Max($A$), the set of all maximal filters of $A$, as a subspace of Spec($A$). We also show that for any filter $F$ of BL-algebra $A$ if $\sigma(F)=F$ then $U(F)$ is stable and $F$ is a pure filter of $A$, where $\sigma(F)=\{a\in A|\,y\wedge z=0$ for some $z\in F$ and $y\in a^\perp\}$ and $U(F)=\{P\in $ Spec($A$)\,$\vert\,F\nsubseteq P\}$. (English)
Keyword: BL-algebra
Keyword: prime filters
Keyword: maximal filters
Keyword: pure filters
Keyword: stable topology
Keyword: F-topology
MSC: 03G25
MSC: 06F35
MSC: 06F99
MSC: 08A72
idZBL: Zbl 1177.03069
idMR: MR2543136
.
Date available: 2010-06-02T18:45:39Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140014
.
Reference: [1] L. P. Belluce, A. Di Nola, and S. Sessa: The prime spectrum of an MV-algebra.Math. Logic Quart. 40 (1994), 331–346. MR 1283500
Reference: [2] L. P. Belluce and S. Sessa: The stable topology for MV-algebras.Quaestiones Math. 23 (2000), 3, 269–277. MR 1809936
Reference: [3] D. Busneage and D. Piciu: On the lattice of deductive system of a BL-algebra.Central European Journal of Mathematics 2 (2003), 221–237. MR 1993450
Reference: [4] A. Di Nola, G. Geurgescu, and A. Iorgulescu: Pseudo-BL-algebra, Part II.Multiple Valued Logic 8 (2002), 717–750. MR 1948854
Reference: [5] G. Georgescu and L. Leustean: Semilocal and maximal BL-algebras.Preprint.
Reference: [6] P. Hájek: Metamathematics of Fuzzy Logic, Trends in Logic.(Studia Logica Library 4.) Kluwer Academic Publishers, Dordrecht 1998. MR 1900263
Reference: [7] P. T. Johnstone: Stone Spaces.(Cambridge Studies in Advanced Mathematics.) Cambridge University Press, Cambridge 1982. Zbl 0586.54001, MR 0698074
Reference: [8] L. Leustean: The prime and maximal spectra and the reticulation of BL-algebras.Central European Journal of Mathematics 1 (2003), 382–397. Zbl 1039.03052, MR 1992899
Reference: [9] L. Leustean: Representations of Many-Valued Algebras.PhD. Thesis, University of Bucharest 2004.
Reference: [10] E. Turunen: Mathematics Behind Fuzzy Logic.Advances in Soft Computing. Physica-Verlag, Heidelberg 1999. Zbl 0940.03029, MR 1716958
Reference: [11] E. Turunen and S. Sessa: Local BL-algebras.Multi-Valued Log. 6 (2001), 1–2, 229–249. MR 1817445
.

Files

Files Size Format View
Kybernetika_45-2009-3_9.pdf 954.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo