Title:
|
Pure filters and stable topology on BL-algebras (English) |
Author:
|
Eslami, Esfandiar |
Author:
|
Haghani, Farhad Kh. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
2009 |
Pages:
|
491-506 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we introduce stable topology and $F$-topology on the set of all prime filters of a BL-algebra $A$ and show that the set of all prime filters of $A$, namely Spec($A$) with the stable topology is a compact space but not $T_0$. Then by means of stable topology, we define and study pure filters of a BL-algebra $A$ and obtain a one to one correspondence between pure filters of $A$ and closed subsets of Max($A$), the set of all maximal filters of $A$, as a subspace of Spec($A$). We also show that for any filter $F$ of BL-algebra $A$ if $\sigma(F)=F$ then $U(F)$ is stable and $F$ is a pure filter of $A$, where $\sigma(F)=\{a\in A|\,y\wedge z=0$ for some $z\in F$ and $y\in a^\perp\}$ and $U(F)=\{P\in $ Spec($A$)\,$\vert\,F\nsubseteq P\}$. (English) |
Keyword:
|
BL-algebra |
Keyword:
|
prime filters |
Keyword:
|
maximal filters |
Keyword:
|
pure filters |
Keyword:
|
stable topology |
Keyword:
|
F-topology |
MSC:
|
03G25 |
MSC:
|
06F35 |
MSC:
|
06F99 |
MSC:
|
08A72 |
idZBL:
|
Zbl 1177.03069 |
idMR:
|
MR2543136 |
. |
Date available:
|
2010-06-02T18:45:39Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140014 |
. |
Reference:
|
[1] L. P. Belluce, A. Di Nola, and S. Sessa: The prime spectrum of an MV-algebra.Math. Logic Quart. 40 (1994), 331–346. MR 1283500 |
Reference:
|
[2] L. P. Belluce and S. Sessa: The stable topology for MV-algebras.Quaestiones Math. 23 (2000), 3, 269–277. MR 1809936 |
Reference:
|
[3] D. Busneage and D. Piciu: On the lattice of deductive system of a BL-algebra.Central European Journal of Mathematics 2 (2003), 221–237. MR 1993450 |
Reference:
|
[4] A. Di Nola, G. Geurgescu, and A. Iorgulescu: Pseudo-BL-algebra, Part II.Multiple Valued Logic 8 (2002), 717–750. MR 1948854 |
Reference:
|
[5] G. Georgescu and L. Leustean: Semilocal and maximal BL-algebras.Preprint. |
Reference:
|
[6] P. Hájek: Metamathematics of Fuzzy Logic, Trends in Logic.(Studia Logica Library 4.) Kluwer Academic Publishers, Dordrecht 1998. MR 1900263 |
Reference:
|
[7] P. T. Johnstone: Stone Spaces.(Cambridge Studies in Advanced Mathematics.) Cambridge University Press, Cambridge 1982. Zbl 0586.54001, MR 0698074 |
Reference:
|
[8] L. Leustean: The prime and maximal spectra and the reticulation of BL-algebras.Central European Journal of Mathematics 1 (2003), 382–397. Zbl 1039.03052, MR 1992899 |
Reference:
|
[9] L. Leustean: Representations of Many-Valued Algebras.PhD. Thesis, University of Bucharest 2004. |
Reference:
|
[10] E. Turunen: Mathematics Behind Fuzzy Logic.Advances in Soft Computing. Physica-Verlag, Heidelberg 1999. Zbl 0940.03029, MR 1716958 |
Reference:
|
[11] E. Turunen and S. Sessa: Local BL-algebras.Multi-Valued Log. 6 (2001), 1–2, 229–249. MR 1817445 |
. |