Previous |  Up |  Next

Article

Title: Asymptotic properties and optimization of some non-Markovian stochastic processes (English)
Author: Gordienko, Evgueni
Author: Garcia, Antonio
Author: Chavez, Juan Ruiz de
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 3
Year: 2009
Pages: 475-490
Summary lang: English
.
Category: math
.
Summary: We study the limit behavior of certain classes of dependent random sequences (processes) which do not possess the Markov property. Assuming these processes depend on a control parameter we show that the optimization of the control can be reduced to a problem of nonlinear optimization. Under certain hypotheses we establish the stability of such optimization problems. (English)
Keyword: nonmarkovian control sequence
Keyword: average cost
Keyword: attracting point
Keyword: nonlinear optimitation
Keyword: stability
MSC: 60F15
MSC: 62M09
MSC: 90B05
MSC: 90C40
MSC: 93C55
MSC: 93E20
idZBL: Zbl 1165.62333
idMR: MR2543135
.
Date available: 2010-06-02T18:44:54Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140019
.
Reference: [1] M. Duflo: Random Iterative Models.Springer-Verlag, Berlin 1997. Zbl 0868.62069, MR 1485774
Reference: [2] E. B. Dynkin and A. A. Yushkevich: Controlled Markov Processes.Springer-Verlag, New York 1979. MR 0554083
Reference: [3] E. I. Gordienko: An estimate of the stability of optimal control of certain stochastic and deterministic systems.J. Soviet Math. 50 (1992), 891–899. (Translated from the Russian publication of 1989). MR 1163393
Reference: [4] E. I. Gordienko and A. A. Yushkevich: Stability estimates in the problem of average optimal switching of a Markov chain.Math. Methods Oper. Res. 57 (2003), 345–365. MR 1990916
Reference: [5] X. Guo and Q. Zhu: Average optimality for Markov decision processes in Borel spaces: a new condition and approach.J. Appl. Probab. 43 (2006), 318–334. MR 2248567
Reference: [6] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Processes.Springer-Verlag, New York 1996. MR 1363487
Reference: [7] R. Montes-de-Oca and F. Salem-Silva: Estimates for perturbations and average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains.Kybernetika 41 (2005), 757–772. MR 2193864
Reference: [8] E. L. Porteus: Foundations of Stochastic Inventory Theory.Stanford University Press, Stanford 2002.
Reference: [9] S. T. Rachev and L. Rüschendorf: Mass Transportation Problems.Vol. II. Springer-Verlag, New York 1998. MR 1619171
Reference: [10] T. N. Saadawi, M. H. Ammar and A. El Hakeen: Fundamentals of Telecomunication Networks.Wiley, New York 1994.
Reference: [11] V. G. Sragovich: Mathematical Theory of Adaptive Control.World Scientific, New Jersey 2006. MR 2206045
.

Files

Files Size Format View
Kybernetika_45-2009-3_8.pdf 1.029Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo