[1] D. Z. Albert:
Quantum Mechanics and Experience. Harvard College, Cambridge 1992.
MR 1221080
[2] C. Asci, G. Letac, and M. Piccioni:
Beta-hypergeometric distributions and random continued fractions. Statist. Probab. Lett. 78 (2008), 1711–1721.
MR 2453912
[3] C. Asci and M. Piccioni:
The IPF algorithm when the marginal problem is unsolvable: the simplest case. Kybernetika 39 (2003), 731–737.
MR 2035647
[4] C. Asci and M. Piccioni:
Functionally compatible local characteristics for the local specification of priors in graphical models. Scand. J. Statist. 34 (2007), 829–840.
MR 2396941
[5] I. Csiszár:
I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146–158.
MR 0365798
[6] A. P. Dawid and S. L. Lauritzen:
Hyper-Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 21 (1993), 1272–1317.
MR 1241267
[7] D. A. van Dyk and X. Meng:
The art of data augmentation. With discussions, and a rejoinder by the authors. J. Comput. Graph. Statist. 10 (2001), 1–111.
MR 1936358
[8] A. Einstein, B. Podolsky, and N. Rosen: Can the quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 (1935), 777–780.
[9] A. Gelman, J. B. Carlin, D. B. Rubin, and H. S. Stern:
Bayesian Data Analysis. Chapman and Hall, London 1995.
MR 1385925
[10] J. P. Hobert and G. Casella:
Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors. J. Comput. Graph. Statist. 7 (1998), 42–60.
MR 1628268
[12] S. L. Lauritzen and T. S. Richardson:
Chain graph models and their causal interpretations (with discussion). J. Roy. Statist. Soc. Ser. B 64 (2002), 321–348.
MR 1924296
[13] S. P. Meyn and R. L. Tweedie:
Markov Chains and Stochastic Stability. Springer-Verlag, London 1993.
MR 1287609
[14] M. Piccioni:
Independence structure of natural conjugate densities to exponential families and the Gibbs’ sampler. Scand. J. Statist. 27 (2000), 111–127.
MR 1774047 |
Zbl 0938.62025
[16] J. L. Schafer:
Analysis of Incomplete Multivariate Data. Chapman and Hall, London 1997.
MR 1692799 |
Zbl 0997.62510
[17] R. L. Tweedie:
R-theory for Markov chains on a general state space I, II. Ann. Probab. 2 (1974), 840–878.
MR 0368151