Previous |  Up |  Next

Article

Title: Stability estimating in optimal sequential hypotheses testing (English)
Author: Gordienko, Evgueni
Author: Novikov, Andrey
Author: Zaitseva, Elena
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 2
Year: 2009
Pages: 331-344
Summary lang: English
.
Category: math
.
Summary: We study the stability of the classical optimal sequential probability ratio test based on independent identically distributed observations $X_1,X_2,\dots$ when testing two simple hypotheses about their common density $f$: $f=f_0$ versus $f=f_1$. As a functional to be minimized, it is used a weighted sum of the average (under $f_0$) sample number and the two types error probabilities. We prove that the problem is reduced to stopping time optimization for a ratio process generated by $X_1,X_2,\dots$ with the density $f_0$. For $\tau_*$ being the corresponding optimal stopping time we consider a situation when this rule is applied for testing between $f_0$ and an alternative $\tilde f_1$, where $\tilde f_1$ is some approximation to $f_1$. An inequality is obtained which gives an upper bound for the expected cost excess, when $\tau_*$ is used instead of the rule $\tilde\tau_*$ optimal for the pair $(f_0,\tilde f_1)$. The inequality found also estimates the difference between the minimal expected costs for optimal tests corresponding to the pairs $(f_0,f_1)$ and $(f_0,\tilde f_1)$. (English)
Keyword: sequential hypotheses test
Keyword: simple hypothesis
Keyword: optimal stopping
Keyword: sequential probability ratio test
Keyword: likelihood ratio statistic
Keyword: stability inequality
MSC: 62L10
MSC: 62L15
idZBL: Zbl 1165.62052
idMR: MR2518155
.
Date available: 2010-06-02T18:34:21Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140072
.
Reference: [1] Y. S. Chow, H. Robbins, and D. Siegmund: Great Expectations: The Theory of Optimal Stopping.Houghton Mifflin Company, Boston 1971. MR 0331675
Reference: [2] E. I. Gordienko and F. S. Salem: Estimates of stability of Markov control processes with unbounded costs.Kybernetika 36 (2000), 195–210. MR 1760024
Reference: [3] E. I. Gordienko and A. A. Yushkevich: Stability estimates in the problem of average optimal switching of a Markov chain.Math. Methods Oper. Res. 57 (2003), 345–365. MR 1990916
Reference: [4] P. J. Huber: A robust version of the probability ratio test.Ann. Math. Statist. 36 (1965), 1753–1758. Zbl 0137.12702, MR 0185747
Reference: [5] A. Kharin: On robustifying of the sequential probability ratio test for a discrete model under “contaminations".Austrian J. Statist. 3 (2002), 4, 267–277.
Reference: [6] A. Kharin: Robust sequential testing of hypotheses on discrete probability distributions.Austrian J. Statist. 34 (2005), 2, 153–162.
Reference: [7] G. Lorden: Structure of sequential tests minimizing an expected sample size.Z. Wahrsch. Verw. Gebiete 51 (1980), 291–302. Zbl 0407.62055, MR 0566323
Reference: [8] V. Mackevičius: Passage to the limit in problems of optimal stopping of Markov processes (in Russian).Litovsk. Mat. Sb. (Russian) 13 (1973), 1, 115–128, 236. MR 0347017
Reference: [9] R. Montes-de-Oca, A. Sakhanenko, and F. Salem-Silva: Estimates for perturbations of general discounted Markov control chains.Appl. Math. 30 (2003), 287–304. MR 2029538
Reference: [10] A. Novikov: Optimal sequential tests for two simple hypotheses.Sequential Analysis 28 (2009), No. 2. Zbl 1162.62080, MR 2518830
Reference: [11] A. Novikov: Optimal sequential tests for two simple hypotheses based on independent observations.Internat. J. Pure Appl. Math. 45 (2008), 2, 291–314. MR 2421867
Reference: [12] V. V. Petrov: Sums of Independent Random Variables.Springer, New York 1975. Zbl 1125.60024, MR 0388499
Reference: [13] P. X. Quang: Robust sequential testing.Ann. Statist. 13 (1985), 638–649. Zbl 0588.62136, MR 0790562
Reference: [14] A. N. Shiryayev: Statistical Sequential Analysis.Nauka, Moscow 1969. (In Russian.)
Reference: [15] A. Wald and J. Wolfowitz: Optimum character of the sequential probability ratio test.Ann. Math. Statist. 19 (1948), 326–339. MR 0026779
Reference: [16] J. Whitehead: The Design and Analysis of Sequential Clinical Trials.Wiley, New York 1997. Zbl 0747.62109, MR 0793018
.

Files

Files Size Format View
Kybernetika_45-2009-2_9.pdf 1.010Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo