[2] Ainsworth, M., Oden, J.:
A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley & Sons, Inc. Chichester (2000).
MR 1885308
[3] Beresin, I. S., Shidkow, N. P.:
Numerische Methoden 1. VEB Deutscher Verlag der Wissenschaften Berlin (1970), German.
MR 0343524 |
Zbl 0226.65001
[4] Dalík, J.:
Quadratic interpolation polynomials in vertices of strongly regular triangulations. Finite Element Methods. Superconvergence, Postprocessing and Aposteriori Estimates. Lect. Notes Pure Appl. Math. 196 M. Křížek et al. Marcel Dekker, Inc. (1998), 85-94.
MR 1602833
[5] Dalík, J.:
Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles. Arch. Math., Brno 35 (1999), 285-297.
MR 1744516
[6] Durán, R., Muschietti, M. A., Rodríguez, R.:
On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math. 59 (1991), 107-127.
DOI 10.1007/BF01385773 |
MR 1106377
[9] Křížek, M.:
Higher order global accuracy of a weighted averaged gradient of the Courant elements on irregular meshes. Proc. Conf. Finite Element Methods: Fifty Years of the Courant Element, Jyväskylä 1993 M. Křížek et al. Marcel Dekker New York (1994), 267-276.
MR 1299997
[10] Křížek, M., Neittaanmäki, P.:
Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45 (1984), 105-116.
DOI 10.1007/BF01379664 |
MR 0761883
[11] Kufner, A., John, O., Fučík, S.:
Function Spaces. Academia Prague (1977).
MR 0482102
[13] Markov, A. A.: Sur une question posée par Mendeleieff. IAN 62 (1889), 1-24.
[14] Prenter, P. M.:
Splines and Variational Methods. John Wiley & Sons, Inc. New York (1975).
MR 0483270 |
Zbl 0344.65044