Previous |  Up |  Next

Article

Title: Optimal-order quadratic interpolation in vertices of unstructured triangulations (English)
Author: Dalík, Josef
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 6
Year: 2008
Pages: 547-560
Summary lang: English
.
Category: math
.
Summary: We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems. (English)
Keyword: interpolation of functions of two variables
Keyword: strongly regular classes of triangulations
Keyword: poised sets of vertices
MSC: 41A05
MSC: 41A10
MSC: 41A63
MSC: 65D05
idZBL: Zbl 1199.41006
idMR: MR2469065
DOI: 10.1007/s10492-008-0041-x
.
Date available: 2010-07-20T12:39:07Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140340
.
Reference: [1] Ainsworth, M., Craig, A.: A posteriori error estimators in the finite element method.Numer. Math. 60 (1992), 429-463. Zbl 0757.65109, MR 1142306, 10.1007/BF01385730
Reference: [2] Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience Series of Texts, Monographs, and Tracts.Wiley & Sons, Inc. Chichester (2000). MR 1885308
Reference: [3] Beresin, I. S., Shidkow, N. P.: Numerische Methoden 1.VEB Deutscher Verlag der Wissenschaften Berlin (1970), German. Zbl 0226.65001, MR 0343524
Reference: [4] Dalík, J.: Quadratic interpolation polynomials in vertices of strongly regular triangulations.Finite Element Methods. Superconvergence, Postprocessing and Aposteriori Estimates. Lect. Notes Pure Appl. Math. 196 M. Křížek et al. Marcel Dekker, Inc. (1998), 85-94. MR 1602833
Reference: [5] Dalík, J.: Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles.Arch. Math., Brno 35 (1999), 285-297. MR 1744516
Reference: [6] Durán, R., Muschietti, M. A., Rodríguez, R.: On the asymptotic exactness of error estimators for linear triangular finite elements.Numer. Math. 59 (1991), 107-127. MR 1106377, 10.1007/BF01385773
Reference: [7] Durán, R., Rodríguez, R.: On the asymptotic exactness of Bank-Weiser's estimator.Numer. Math. 62 (1992), 297-303. Zbl 0761.65077, MR 1169006, 10.1007/BF01396231
Reference: [8] Gasca, M., Sauer, T.: On bivariate Hermite interpolation with minimal degree polynomials.SIAM J. Numer. Anal. 37 (2000), 772-798. Zbl 0951.65008, MR 1740382, 10.1137/S0036142998338873
Reference: [9] Křížek, M.: Higher order global accuracy of a weighted averaged gradient of the Courant elements on irregular meshes.Proc. Conf. Finite Element Methods: Fifty Years of the Courant Element, Jyväskylä 1993 M. Křížek et al. Marcel Dekker New York (1994), 267-276. MR 1299997
Reference: [10] Křížek, M., Neittaanmäki, P.: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), 105-116. MR 0761883, 10.1007/BF01379664
Reference: [11] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia Prague (1977). MR 0482102
Reference: [12] Liang, X.-Z., Lü, C.-M., Feng, R.-Z.: Properly posed sets of nodes for multivariate Lagrange interpolation in $C^s$.SIAM J. Numer. Anal. 39 (2001), 587-595. Zbl 1026.41005, MR 1860262, 10.1137/S0036142999361566
Reference: [13] Markov, A. A.: Sur une question posée par Mendeleieff.IAN 62 (1889), 1-24.
Reference: [14] Prenter, P. M.: Splines and Variational Methods.John Wiley & Sons, Inc. New York (1975). Zbl 0344.65044, MR 0483270
Reference: [15] Ovall, J. S.: Asymptotically exact functional error estimators based on superconvergent gradient recovery.Numer. Math. 102 (2006), 543-558. Zbl 1108.65108, MR 2207272, 10.1007/s00211-005-0655-9
Reference: [16] Sauer, T., Xu, Y.: On multivariate Lagrange interpolation.Math. Comput. 64 (1995), 1147-1170. Zbl 0823.41002, MR 1297477, 10.1090/S0025-5718-1995-1297477-5
Reference: [17] Wilhelmsen, R. Don: A Markov inequality in several dimensions.J. Approx. Theory 11 (1974), 216-220. Zbl 0287.26016, MR 0352826, 10.1016/0021-9045(74)90012-4
.

Files

Files Size Format View
AplMat_53-2008-6_3.pdf 307.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo