Title:
|
Optimal-order quadratic interpolation in vertices of unstructured triangulations (English) |
Author:
|
Dalík, Josef |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
53 |
Issue:
|
6 |
Year:
|
2008 |
Pages:
|
547-560 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems. (English) |
Keyword:
|
interpolation of functions of two variables |
Keyword:
|
strongly regular classes of triangulations |
Keyword:
|
poised sets of vertices |
MSC:
|
41A05 |
MSC:
|
41A10 |
MSC:
|
41A63 |
MSC:
|
65D05 |
idZBL:
|
Zbl 1199.41006 |
idMR:
|
MR2469065 |
DOI:
|
10.1007/s10492-008-0041-x |
. |
Date available:
|
2010-07-20T12:39:07Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140340 |
. |
Reference:
|
[1] Ainsworth, M., Craig, A.: A posteriori error estimators in the finite element method.Numer. Math. 60 (1992), 429-463. Zbl 0757.65109, MR 1142306, 10.1007/BF01385730 |
Reference:
|
[2] Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience Series of Texts, Monographs, and Tracts.Wiley & Sons, Inc. Chichester (2000). MR 1885308 |
Reference:
|
[3] Beresin, I. S., Shidkow, N. P.: Numerische Methoden 1.VEB Deutscher Verlag der Wissenschaften Berlin (1970), German. Zbl 0226.65001, MR 0343524 |
Reference:
|
[4] Dalík, J.: Quadratic interpolation polynomials in vertices of strongly regular triangulations.Finite Element Methods. Superconvergence, Postprocessing and Aposteriori Estimates. Lect. Notes Pure Appl. Math. 196 M. Křížek et al. Marcel Dekker, Inc. (1998), 85-94. MR 1602833 |
Reference:
|
[5] Dalík, J.: Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles.Arch. Math., Brno 35 (1999), 285-297. MR 1744516 |
Reference:
|
[6] Durán, R., Muschietti, M. A., Rodríguez, R.: On the asymptotic exactness of error estimators for linear triangular finite elements.Numer. Math. 59 (1991), 107-127. MR 1106377, 10.1007/BF01385773 |
Reference:
|
[7] Durán, R., Rodríguez, R.: On the asymptotic exactness of Bank-Weiser's estimator.Numer. Math. 62 (1992), 297-303. Zbl 0761.65077, MR 1169006, 10.1007/BF01396231 |
Reference:
|
[8] Gasca, M., Sauer, T.: On bivariate Hermite interpolation with minimal degree polynomials.SIAM J. Numer. Anal. 37 (2000), 772-798. Zbl 0951.65008, MR 1740382, 10.1137/S0036142998338873 |
Reference:
|
[9] Křížek, M.: Higher order global accuracy of a weighted averaged gradient of the Courant elements on irregular meshes.Proc. Conf. Finite Element Methods: Fifty Years of the Courant Element, Jyväskylä 1993 M. Křížek et al. Marcel Dekker New York (1994), 267-276. MR 1299997 |
Reference:
|
[10] Křížek, M., Neittaanmäki, P.: Superconvergence phenomenon in the finite element method arising from averaging gradients.Numer. Math. 45 (1984), 105-116. MR 0761883, 10.1007/BF01379664 |
Reference:
|
[11] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia Prague (1977). MR 0482102 |
Reference:
|
[12] Liang, X.-Z., Lü, C.-M., Feng, R.-Z.: Properly posed sets of nodes for multivariate Lagrange interpolation in $C^s$.SIAM J. Numer. Anal. 39 (2001), 587-595. Zbl 1026.41005, MR 1860262, 10.1137/S0036142999361566 |
Reference:
|
[13] Markov, A. A.: Sur une question posée par Mendeleieff.IAN 62 (1889), 1-24. |
Reference:
|
[14] Prenter, P. M.: Splines and Variational Methods.John Wiley & Sons, Inc. New York (1975). Zbl 0344.65044, MR 0483270 |
Reference:
|
[15] Ovall, J. S.: Asymptotically exact functional error estimators based on superconvergent gradient recovery.Numer. Math. 102 (2006), 543-558. Zbl 1108.65108, MR 2207272, 10.1007/s00211-005-0655-9 |
Reference:
|
[16] Sauer, T., Xu, Y.: On multivariate Lagrange interpolation.Math. Comput. 64 (1995), 1147-1170. Zbl 0823.41002, MR 1297477, 10.1090/S0025-5718-1995-1297477-5 |
Reference:
|
[17] Wilhelmsen, R. Don: A Markov inequality in several dimensions.J. Approx. Theory 11 (1974), 216-220. Zbl 0287.26016, MR 0352826, 10.1016/0021-9045(74)90012-4 |
. |